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Abstract--This article discusses the mathematical-educational potential of a computational laboratory at 
the pre-calculus and co-calculus levels. The laboratory envisaged is based on a set of microcomputers, 
whose use plays a central role in the teaching process, with particular emphasis on algorithmization. A 
new role for the mathematics teacher and professor is layed out, augmenting the "chalk and talk" methods 
by active participation as a laboratory instructor. Following a brief description of the integration of such 
a laboratory into the mathematical education, seven appropriate subjects are discussed, including some 
new relevant elementary proofs and worked out examples. Emphasis is placed upon the mathematical- 
educational byproducts (such as error bounds, ill-conditioning, complexity, rate of convergence, etc.) 
accompanying the implementation of these seven modules. Special attention is given to the removal of 
"black box" procedures and to the construction of "numerical methods that work". Extensions and 
generalizations to more advanced topics are indicated, especially where the results in our modules may 
serve as points of departure in that direction. 

1. THE MATHEMATICAL LABORATORY AND ITS POTENTIAL 

Accumulated experience has shown that early emphasis on algorithmic thinking, augmented by 
actual computing, is indispensable in mathematical education. Recognizing the cardinal importance 
of the individual, active involvement of each and every student in the computational activity (as 
opposed to a mere demonstration by the teacher), we advocate the use of mathematical 
laboratories, based upon a set of microcomputers. Under optimal conditions a special room should 
be set aside for a mathematical laboratory. Failing that, the physics or chemistry laboratories may 
be used, since they tend to create the proper atmosphere. Each pair of students is assigned to a 
microcomputer, very much like the microscopes in the biology laboratory. A few hours out of the 
students' weekly mathematical training should be spent in the laboratory, most of which being 
devoted to working with its microcomputers. 

The mere presence of an increasing number of microcomputers in various educational 
institutions, even those at which a programming language such as True-BASIC or Pascal is taught, 
in no way constitutes a new mode of teaching and learning. The full potential of microcomputers, 
along with proper courseware, should be harnessed to improve the state-of-the-art in education. 
Moreover, a new role is to be played by the mathematics teacher in accordance with this objective, 
since his previous "chalk and talk" methods must henceforth be augmented by active participation 
a s  a laboratory instructor. 

The following points will serve to bring out the educational potential of the mathematical 
laboratory: 

Concretization of abstract ideas 

Abstract mathematical concepts may be made concrete and thus are likely to be vividly grasped 
and understood. The limit concept, for example, is a case in point. Furthermore, the computational 
approach leads to an interplay between theoretical and numerical ideas which undoubtedly 
improves the teaching process. 

Creativity coupled with delightful learning 
In the laboratory, a higher percentage of the students will be active (at their own pace) than under 

traditional learning circumstances. Creativity is stimulated through the fun-filled, gratifying 
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dialogue with the computer. The student will experience the truth of the saying "mathematics is 
like kissing--the only way to discover its delights is by doing it". 

Individual pace 

The laboratory environment enables every pair of students to progress at a pace compatible with 
their ability (subject, of course, to some minimum goal required of everybody). The better pairs 
of students will tackle some of the "starred" assignments, without being held back and bored by 
the traditional pace of an average class. "Double starred" assignments will be designed to challenge 
one or two pairs of superior students to come up with their own original ideas, generalizations, 
improved algorithms, etc. Their progress should not be channelled towards the next assignment but 
rather towards a more profound mastery of the current subject. In this way every student can realize 
his full potential. 

No more tables 

The laboratory is the most natural means of doing away with tables, which have traditionally 
been used as "black boxes" without the faintest understanding of their construction. It is to be 
emphasized that we are not advocating the introduction of new "black boxes" by using, say, the 
logarithmic built-in function of the microcomputer. The student will learn just what is behind such 
built-in functions as part of the material covered in the mathematical laboratory. 

Getting down to earth 

As pointed out by William E. Milne, "many know how to solve a probelm but can't do it". The 
mathematical laboratory serves to educate the student not to fall into this category, but rather to 
train him to translate his theoretical ideas into practical algorithms which actually work. At the 
same time the algorithmic thinking of the students is cultivated and this, according to some 
researchers (see Ref. [1]), should be placed at the center of mathematical education. 

In-depth learning 

While teaching a certain subject, we often find out that we never fully understood certain subtle 
points. Writing a computer program will usually show us that there are even more fundamental 
issues we never paid attention to. Being a dummy (though a fast and powerful one), the computer 
will carry out our instructions precisely--but blindly. Lack of total, in-depth understanding of the 
problem at hand may lead to an imperfect program, which will break down exactly when an 
unforseen situation occurs. 

Learning by discovery 

The mathematical laboratory offers virtually unlimited opportunities to the art of learning by 
discovery. The microcomputer enables the user to set up mathematical "experiments", to test 
various conjectures, to check non-trivial particular cases of a general proposition, etc. It goes 
without saying that not every given group of students can be expected to take full advantage 
of this method of learning. On the other hand, the better students can and will. Even in modern 
mathematical research, there are examples of outstanding results whose origin can be traced to 
computational experimentation. The discovery of solitons is a case in point. Every student of 
mathematics should experience the gratifying feeling inherent in the discovery of some 
mathematical rule by himself. This method clearly enhances intuitive thinking, an essential 
component of the learning of mathematics. 

New vital aspects in the teaching of  mathematics 

The mathematical laboratory introduces, and in fact stresses, some new and vital concepts 
conspicuously absent from standard curricula. Some examples are approximate solutions with error 
control, computational efficiency and complexity, the influence of small changes in the data on the 
overall solution, and the characterization of situations where the effect of round-off errors is critical. 

We find concurrence with our ideas in the fact that two of the main recommendations for school 
mathematics in the 1980s put forth by the American NCTM were that problem solving be stressed 
and that calculators and computers be used to full advantage at all levels. 
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An efficient way of implementing the ideas outlined above is the introduction of, say, nine 
computational models, seven of which have been completed by us as described below. A conscious 
effort has been made in each module to construct elementary proofs, at the pre-calculus or 
co-calculus level, sacrificing complete generality at times but maintaining full rigor throughout. We 
found this to be a highly satisfactory compromise, allowing the use of  much simpler proofs. These 
proofs are then followed by a statement of the type "the results of this theorem can be generalized 
so as to be valid for a wider class of functions, i.e. all funct ions . . . " .  

We now turn to the actual discussion of our seven modules, including worked out examples. 

2. AREA A P P R O X I M A T I O N  IN THE M A T H E M A T I C A L  LABORATORY 

In our first typical laboratory module [2] we study the approximation of areas to a prescribed 
accuracy, including the appropriate error analysis. Different types of approximations are examined, 
with progressively increasing efficiency, and their laboratory implementation discussed. Extensions 
and generalizations are indicated for more advanced mathematical education. 

To begin with, the rectangle method for approximating the area under the graph of a positive 
function should be introduced, including a pre-calculus error analysis for monotonic functions. 
This method requires considerable microcomputer time for high accuracy calculations, and thus 
motivates a search for better methods (see Ref. [2]). Since the rectangle method is based upon 
rectangles, which are simple geometric figures meeting the curve at one point per strip, it is only 
natural to try and use a set of trapezoids which meet the curve at two points per strip. 

In order to maintain the advocated rigorous approach even at the pre-calculus level, we shall 
limit the generality, to start with, to convex (or concave) functionsf(x).  These concepts should be 
defined geometrically by using the property that any secant connecting two arbitrary points on such 
a curve is completely above (or completely below) the curve. 

It is good to start with a specific example such as f ( x ) =  1Ix (convex), for 1 ~ x  ~<2. 
Alternatively, f ( x )  = x/~ (concave) might be used. The sum of all the trapezoidal areas is given by 

Tn = h [½f(x0) + f (x, ) + ' "  + f (xn_ , ) + ½f(x,)], (1) 

where xo = a, x~ = b, h = (b - a)/n and xj = a +jh .  
In line with our spirit of teaching via the mathematical laboratory, we shall make an effort to 

estimate the error incurred by the approximation T, in a vivid geometrical way. This will include 
the construction of a teaching aid for every student to see (and even build for himself). It turns 
out, as we shall see below, that concave functions are more convenient for this construction. 

Let us draw the function f (x )  and its associated trapezoids. Next we continue the " roof"  of each 
trapezoid to the left, say, until it covers the adjacent trapezoid (see Fig. 1). In addition, we draw 
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an extraneous trapezoid Q, which fits into the extension o f f ( x )  to the right, from x = b to 
x = b + h, as seen in the figure. Had we extended the roofs to the right, we would now be adding 
an extra trapezoid to the left of x = a. We now observe that the "local error" (per strip) incurred 
by the trapezoidal approximation is the difference between the area under the curve f ( x )  and the 
area of the corresponding trapezoid. This error, in turn, is seen in Fig. 1 to be less than the triangle 
(such as t~, t2 or t3) sitting on that very trapezoid. If  the funct ionf(x)  is convex (and not concave 
as in the figure), we would obtain a similar situation except that the roles of the two non-vertical 
sides of the little triangles would be reversed. 

Now we take the extreme triangle on the right (t~ in Fig. 1) and slide it leftward until it sits 
precisely on top of its adjacent triangle (t2 in Fig. 1). Our construction of these triangles enables 
us to do just that. Next we take t~ and t:, together, and slide them leftward until they sit right 
on top of t3 (see Fig. 2). In general there will be n strips, and we may carry out the sliding process 
just described ( n -  1) times. In this way we shall obtain a composite triangle, composed of n 
little triangles with no overlapping and no holes. The situation for three strips (n = 3) is shown 
in Fig. 2, in which the final, composite triangle has vertices U, V and W. A teaching aid designed 
to demonstrate this sliding process can easily be constructed and successfully employed in the 
mathematical laboratory. 

Since the composite triangle consists of the sum of triangles each of which represents a bound 
on the local error, its area B gives us a bound for the global error E = I S - T, I, where S is the 
area under the curve. Thus we have 

h iz _ f ( a ) l  ' (2) E--IS-T.I<B--~ 
in which z is the distance of the point V from the x-axis. Clearly, the area B of the composite 
triangle is given by one-half of its height h times its base I z - f (a)1 .  The absolute value is used here 
since for a convex function z < f ( a ) .  

In order to calculate the value of z, we write down the equation of the straight line through U 
and V. This line goes through the point (a + h , f (a  + h)), so that we have 

y = m[x - (a + h)] + f ( a  + h). (3) 

A little reflection will show that the effect of the sliding process is to cause the slopes of the tops 
of the triangles t~, t~ + t:, etc., to be equal, indeed equal to the slope of the roof of the extraneous 
trapezoid Q. Consequently, 

f ( b  + h) - f ( b )  
m = (4) 
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Substituting x = a in equation (3) and using the value of  m from equation (4), we reach 

z = - f ( b  + h) +f(b) +f(a  + h), 
from which 

(5) 

where 

K (b -2a)2 I f (b +h)h - f ( b )  
I 

We shall now investigate the 
1 ~< x ~< 2. For this case, 

f (a  + h) - f ( a )  (9) 
h 

It follows that in this case K does not exceed 1/2, regardless of the number of  strips used in the 
approximation. The global error, therefore, is bounded by (l/2)/n 2. Whereas the rectangle 
approximation yields an error bound inversely proportional to n, the trapezoidal approximation 
gives an error bound inversely proportional t o  n 2, at least for f ( x ) =  1Ix. 

More generally, a method of  approximation with an error bound inversely proportional to n p 
is called a method of  order p. Thus the rectangle method is of  first order, whereas the trapezoidal 
method seems to be of  second order. 

In our particular case, f ( x )  = 1/x for 1 ~< x ~< 2, the attainment of  q correct decimal figures 
requires that (1/2)/n:<~ (1/2)10 -q, so that n = 10 q/2 will do. Thus, four correct decimal figures 
necessitate 100 strips, in contradistinction to 10,000 strips that are needed when the rectangle 
method is used for the same purpose. More generally, the use of  a second order method is seen 
to save a lot of  computational effort (for a given accuracy), since the accompanying error decreases 
at a faster rate with refinement of  the partition (increasing n). 

For f ( x )  = 1/x we obtained that K ~< 1/2, independently of  n, where K as given by equation (9) 
is the numerator of  the error bound (8). In general, for a given convex or concavef (x) ,  it is only 
necessary to analyze equation (9) and determine a constant, say K, such that K ~< g" on the under- 
lying interval for all n. Except for the multiplying factor (b - a)2/2, the right-hand side of  equation 
(9) is just the difference of  the slopes of  the secants associated with the interval endpoints. The only 
situation that may present a difficulty would be the case of  a func t ionf (x)  possessing vertical (i.e. 
unbounded) slopes near one or both endpoints of the interval, such as x/1 - x  ~ near x = 1. If 
we agree to exclude such cases from our considerations, we may sum up our findings as follows: 

Given a function f (x) ,  which is continuous, positive and convex or concave on 
[a, b]. If  we approximate the area S under the curve by 7", given by equation (1), then 
the error incurred [S - T,[ will not exceed g/n 2, where g is a constant independent 
of  n (and h), satisfying 

g > ~ K = ( b - a ) 2 1 f ( b + h ) - f ( b ) - f ( a + h ) - f ( a )  h h . (11) 

- 1 (1 + - - ~ -  1 ) - 1 )2  1 ( 2 1  k ~)  ~ K=(2 2 IF 

~ 1 1 I 1 / 1 \ 1  
- l + h  2(2 + h) < 2 ~ 1 - ~ )  ~< 2 " 

nature of K in a typical problem by considering f (x )  = 1/x for 

(lO) 

h 
B = -~[-f(b + h) +f(b) +f(a + h) - f ( a ) [ .  (6) 

For future convenience, we shall rewrite equation (6) in the form 

--~h 2 f (b + h) - f ( b )  _ f (a  + h) - f ( a )  I ' (7) 
s =  h h 

i 

so that inside the absolute value symbol we have the difference of  two slopes of  the type (4). Using 
h = (b -a) /n  in the factor h2/2 in equation (7), we reach 

K 
B - - -  ( 8 )  

- - n  2 , 



18 
S. Br~t~R et al. 

In many cases, the given function may be neither convex nor concave over the underlying 
interval, but may enjor o n e  of these properties in suitably constructed subintervals. By applying 
the above analysis to each subinterval, we are able to enlarge the class of functions to which our 
results are applicable. 

Other examples of using this error bound, as well as details concerning the implementation of 
this laboratory assignment, may be found in Ref. [2]. 

3. MATHEMATICAL-EDUCATIONAL ASPECTS OF 
THE COMPUTATION OF n 

In this module [3], four methods of computing rr are discussed at the pre-calculus and co-calculus 
levels. Emphasis is placed upon the mathematical-educational by-products accompanying the 
implementation of these methods. Thus it is shown how to expose the laboratory participants to 
concepts such as error bounds and control, ill-conditioned algorithms, rates and acceleration of 
convergence, probabilistic reasoning and computer simulation--while their attention is focused 
upon the computation of n. 

We first introduce the historically important method of Archimedes, using perfect polygons 
inscribed in and circumscribed about a unit circle. The loss of accuracy due to round-off errors 
in this method is demonstrated and analyzed. Table 1 shows typical results obtained with a 
microcomputer. In this table, n denotes the number of sides ot" the polygon and P is the 
approximation of re, computed by averaging the semi-perimeters of the inscribed and circumscribed 
n-gons. We left a few blank spaces between the last accurate figure of n (obtained via better 
methods) and the first inaccurate one, in order to emphasize the increasing, and then decreasing 
accuracy, inherent in this method. 

These results should be compared with the results obtained by computing the area under 
the graph of the function y = ~ / 1 -  x 2. This computation has been carried out, using the 
trapezoidal method (for 0 ~< x ~ 1) with 800 strips, and yielded the approximation 3.14159. (For 
details see Ref. [3].) 

Next, we offer the laboratory participants to tackle the so-called Buffon's needle-tossing method, 
named after Count Buffon who discovered it in the eighteenth century. Unlike the previous two 
methods, the present one calls for some rudimentary knowledge of integral calculus (see Refs [3, 4]). 
Typical results are given in Table 2. 

The subtleties inherent in the use of random number generators (especially for a vast number 
of times) are left in the background. A closer examination will show that if our only interest were 
to calculate rt with ever increasing accuracy, we would end up testing the quality of the generator 
rather than approximating n. Moreover, Table 2 shows the convergence to be deplorably slow. 
Nevertheless, we highly recommend including the Buffon method among the assignments of the 
mathematical laboratory. It has a considerable mathematical-educational value in that it introduces 
probabilistic methods into the realm of computing, and those in turn lead to the well known 
Monte-Carlo methods. In addition, the laboratory participants are given the opportunity to 
become acquainted with the concept of simulation. 

The last method described in this module is based upon the expansion of arctan x in a power 
series and is intended therefore for co-calculus level laboratory participants. Following John 
Machin we use the arctan addition formula 

to obtain 

arctan u + arctan v = arctan - -  u + v (12) 
1 - - u v '  

n 1 1 
= arctan ~ + arctan 3" (13) 

With this formula, 10 terms in the power series will supply us with six correct decimal figures 
of n. (For details see Ref. [3], where a brief historical sketch of developments in computing n may 
be found.) 
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Table I 

n P 

12 3.1 60609 
24 3.14 6144 
48 3.14 2718 
96 3.141 873 

192 3.141 663 
384 3.1415 98 
768 3.14159 3 

1536 3.1415 83 
3072 3.141 487 
6144 3.141 862 

12288 3.14 4864 
24576 3.1 56844 

Table 2 

No. of tosses Approximation 

104 3.1521 
105 3.1382 
l0 s 3.1409 
107 3.1416 

The authors '  own experience in implementing the computation of  rc in a mathematical 
laboratory has been very gratifying indeed. Most participants were very enthused as their activity 
centered around a well known yet tantalizing assignment, while being exposed to a variety of  
mathematical ideas. Such a gratifying success may be achieved if the laboratory instructor 
constantly bears in mind that teaching mathematics--and not the computation of  n per s e - - i s  the 
ultimate goal. 

4. C O N V E R G E N C E  A C C E L E R A T I O N  AS A C O M P U T A T I O N A L  
A S S I G N M E N T  

In Ref. [5] we treat methods of  accelerating the convergence of  infinite series, in a way 
appropriate for a mathematical-educational laboratory. Following a discussion concerning rate 
of  convergence, closed-form sums, and the use of  upper and lower remainder estimates, 
the acceleration methods of  Kummer  and Euler as well as a method based on an approxi- 
mate recursion relation are presented. Only rudimentary concepts from calculus are used. The 
actual reduction of  the number of  terms needed to achieve a desired accuracy, is vividly 
demonstrated via runs on a typical laboratory microqomputer. Here we will demonstrate the 
method based on an "approximate"  recursion relation, using the geometric series as a point 
of  departure. 

The terms of  a geometric series Ya, satisfy the relation a, + ~ = qa,. If  I q I < 1, the sum of the 
infinite series is given by 

a0 = a0 = a0: (14) 
S = l _ q  1 - a l / a o  a o - a l "  

A closed-form formula can also be obtained for series whose terms satisfy 

a.+l = c(1 a. + ~2a._ ,. (15) 

This can be seen by summing up both sides of  equation (15) for n = 1.2 . . . . .  to obtain 

S - a0 - al = ~l (S - a0) + ~2S. (16) 

so that for this convergent series we have 

S = a0 + al - ~la0 (17) 
1 - -  Gt I - -  ~ 2  

If  the values of  ~j and ~2 are known, the sum can be computed from equation (17). Otherwise, 
~1 and ~2 can be found from equation (15) for n = 1, 2, yielding 

S = (ao + al)(a21 -- aoa2) -- ao(a2al -- aoa3) 

a~ + a~ + ao(a3 -- a2) -- al (a3 + a:) 
(18) 
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We have thus expressed S in terms o f  a0, al ,  a2 and a 3 . In  general, if we have a convergent  series 
whose terms satisfy the relat ion 

a n + k _ l  = ~ l a n + k - 2  + ' "" + ~ k a , - I .  (19) 

for  all n, then its sum can be expressed in terms o f  a0, am . . . .  , a2,_ i. The  resulting formulas ,  
similarly to equa t ion  (18), are a na tura l  extension o f  the geometr ic  series formula.  

The  me thod  presented in this section makes  use of  the above,  to accelerate the convergence of  
series whose terms a p p r o x i m a t e l y  satisfy a relat ion o f  the fo rm o f  equat ion  (19). 

The  following example  will serve to show what  is mean t  by "app rox ima te ly  satisfy".  Let  us 
consider  the a l ternat ing series 

~ an = ( -  l)n (20) 
.=0 .=0 2n + 1 

In order  to discover  the relat ion between three consecutive terms o f  equa t ion  (20), let us examine 
the following linear combina t ion :  

( - 1 )  n+l ( - -1 )  n (--I) n-I 

an + l - -  ~tan - -  f lan - l = 2 n + 3  Ot 2 n  + l fl  2 n  - - 1  

= ( _  1) n 4(fl -- ~t -- 1)n  z + 4(2fl -- 0t)n + (3fl + 30t + 1) (21) 
(4n ~ -- 1)(2n + 3) 

We  would  like to choose ~t and fl, so tha t  the r ight -hand side will vanish, or  at  least be as small  
as possible for  large values o f  n. Choos ing  ~t = - 2  and fl = - 1 so that  

f l - 0 t  = 1 ,  

2fl - ~t = 0, (22) 

causes the coefficients o f  n 2 and  n in the n u m e r a t o r  to vanish,  and we are left with 

- 8  
an+ I + 2an + an-~ = ( - -  1) n (4n~ _ l ) (2n + 3)" (23) 

In  other  words,  we found  that  

a n + l = - - 2 a n - - a n _ , + O ( - ~ ) .  (24) 

This  is wha t  we mean t  by saying tha t  the terms "app rox ima te ly  sat isfy" a relat ion of  the fo rm 
(19), i.e. a recursion relat ion that  holds up to terms o f  order  1 / n  p, p > O. 

Now,  let us sum equat ion  (23) for  n = l, 2 . . . . .  to obta in  

8 ~ ( -  1)" (25) S - a 0 - al = - 2 ( S  - a0) - S - hE_ I (4n: - -  1 -~ 'n  + 3)" 

Since a0 = l and  a~ = - 1 / 3 ,  we find that  

= x~ (--1)n = ~ +  2 ~ (--1)"+~ 
S (26) 

n~0 2n + 1 . -1  ~ '  ( 4n2 ~ 1 ~  + 3)" 

As a result, the me thod  enables us to replace the original series by a faster  converging series, as 
will be seen below. 

Both series in equat ion  (26) a l ternate  in sign, and thus (see Ref. [5]) their remainders  satisfy 

.-k+l 2n + 1 

(--1)"+1 3) 
2 ~ (4n~--_ l ~  + ~< 

n = k + l  

1 I 
~< ~ < ~-~, (27) 

2 1 
< (28) 

(4k 2 + 8 k + 3 ) ( 2 k + 5 )  4k 3" 
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Now, to compute S so that a tolerance of (1/2)10 -4 can be assured, 10,001 terms are needed in 
the original series, while only 18 terms are needed after applying this method as shown. We see 
that a considerable acceleration has been achieved. 

The method can be extended further, by examining four consecutive terms, rather than three as 
in equation (21). By doing so we get 

( -1 ) "  
an+2 -- ~a,+l -- ran -- ?an-t = (2n + 3)(2n + 5)(4n 2 -- 1) [8(~ -- fl + y + 1)n 3 

+ 4 ( 5 ~ - - 7 f l + 9 ? + 3 ) n 2 + 2 ( - - ~ - - T f l + 2 3 y - - 1 ) n + ( - - 5 ~ + 1 5 f l + 1 5 7 - - 3 ) ] .  (29) 

Reasoning as before, we choose • = - 3 ,  fl = - 3  and y = - 1 ,  so that the coefficients of n 3, n 2 

and n will vanish. This leads to 

48 
an+2 = -3an+l  - 3an - an-i + ( -  1) n+l . (30) 

(2n + 3)(2n + 5)(4n 2 - 1) 

Summing up both sides of equation (30) for n = 1, 2 . . . . .  and using the values of a0, al and a2, 
we end up with 

n~ (-- l)n+l S = ~ + 6  . (31) 
=1 (2n "4- 3)('~n ~ 5)-(4n 2 -- 1) 

Checking the remainder this time, we find that it is bounded by 0.375/k 4 and thus only eight terms 
are needed to assure the tolerance of (1/2)10 -4 . 

The laboratory participants will observe, that the additional preparatory work, was not worth 
while, particularly since the terms of the new series are computationally more complex. The 
advantage of equation (31) over equations (21) will be more pronounced when higher accuracy is 
required. Nevertheless, adding eight terms of equation (3 l), we found S = 0.7854 to four decimals. 
Adding 18 terms in equation (21) yielded the same result. Just as a check, we summed 10,001 terms 
in the original series using double precision, and also found 0.7854 to four decimals. We had to 
use double precision since the accuracy is otherwise damaged due to round-off errors creeping into 
the computation and accumulating for such large values of  n. The need to avoid such accumulations 
emphasizes even more the importance of acceleration methods. The laboratory participants should 
be asked to apply the method to other series, such as 

~ (__l)n ~ qn 
n~ and 2 n - - l '  - l ~ < q < l .  n=l n=l 

The method presented above bears some resemblance to the E-method, which is beyond our scope 
here. The precise conditions under which the E-method is effective, as well as a presentation of 
another variant called the p-method, may be found, for example, in Ref. [6]. A presentation of 
Kummer's and Euler's methods, in a way appropriate for a microcomputer educational laboratory, 
can be found in Ref. [5]. 

This laboratory assignment not only shows how to improve computational efficiency, but rather 
emphasizes the difference between a theoretical proof that a series converges, and an actual 
computation of its sum to a given accuracy. 

5. AN A L G O R I T H M I C  APPROACH TO LINEAR SYSTEMS 

As another mathematical laboratory subject, an algorithm for the solution of algebraic linear 
systems is presented. No knowledge of matrices, vectors and the underlying theory is assumed. 
Pedagogical considerations guided the choice of material, style and level of presentation, while 
emphasizing the learning process in a mathematical laboratory environment. Special attention is 
given to possible loss of  accuracy, sensitivity to minor changes in the data, pivoting, pre-scaling 
and computational efficiency. Since the laboratory participants are introduced to these concepts 
without using matrix theory, the laboratory sessions can be carried out even before the study of  
linear algebra. 
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We suggest the introduction of Gaussian elimination via the use of a concept such as the 
"coefficient-table" (see Ref. [7, p. 503]). 

The concept of computational complexity should be discussed in the laboratory in connection 
with the estimate of computational work in the elimination as a function of N, the number of 
unknowns. We show that the naive elimination process has a computational complexity of N 3 
(for details see Ref. [7, p. 508]). Some available methods for solving N linear equations have 
a complexity of N! so that they are of course exceedingly less efficient than the Gaussian 
elimination. (The laboratory participants should compare these complexities for increasing values 
of N, in order to get the proper feeling of the difference.) 

The laboratory instructor should not fail to emphasize at the very beginning that we are 
interested not only in constructing a solution algorithm that works, but also in its efficiency. This 
consideration will appear time and again in the laboratory's activities, and the participants should 
be made aware of it right from the start. This tends to make them more critical and willing to 
compare various methods of completing a given assignment. We feel that this is a relevant point 
in the difference between mathematical education and learning mathematics. 

Pivoting is shown to be essential [7, pp. 509-512], since naive elimination does not take into 
account a zero or a very small (in absolute value) pivot element. 

It should be emphasized that having computational difficulties (due to small pivot elements, say) 
depends crucially on the accuracy of the computing-device used. To demonstrate this, let us 
consider the following system: 

- 1 . 4 1  2 0 

1 - 1 . 4 1  1 

0 2 - 1.41 

1 

1 , 

1 

(32) 

whose solution (correct to three significant figures) is X(1) = X(2) = X(3) = 1.69. Let us now make 
the artificial assumption that we are equipped with a three-decimal-digit computer. Thus we will 
round-off every computer result to three significant figures in order to simulate our assumed 
computing-device. In order to achieve triangularization, we multiply the first row by 1/1.41 --- 0.709 
and add it to the second. Then we multiply the new second row by -2/0.01 = - 2 0 0  and add it 
to the third, to obtain 

- -  1 . 4 1  2 0 

0 0.01 1 

0 0 --201 

1 

1 . 7 1  

--341 

(33) 

The back-solution now yields X(3)= 1.70, X(2)--1.00 and X(1)= 0.709, which is manifestly 
incorrect. Had we used the pivoting strategy, the correct solution (to three significant figures) would 
have been found. Using pivoting would not have been necessary, had we used a five-decimal-digit 
computer. With such a computer, we start by multiplying the first row by 1/1.41 = 0.70922 and 
adding it to the second, then multiplying the second by - 2/0.00844 = - 236.97 and adding it to 
the third. This leads to 

- 1 . 4 1  2 0 

0 0.00844 1 

0 0 -238.38 

1 

1.7092 

-404.03 

(34) 

The back-solution gives: X(3)-- 1.6949, X(2)= 1.6943 and X(1)= 1.6940 which, when rounded 
finally to three significant figures, is correct (to this accuracy). 

This opportunity can be used by the laboratory instructur to introduce the concept of double 
precision, and point out that increasing the accuracy of the computations from three to five digits, 
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in our example, is roughtly like a change from single to double precision. Thus, the laboratory 
participants should reach the following conclusions: 

(i) The degree of computational difficulty depends on the computational device 
used. 

(ii) Changing single precision to double precision sometimes contributes to over- 
coming the computational difficulty. 

When we are actually solving a given linear system on a computer, we find that round-off errors 
are always present in the data stored or in intermediate results. In addition, the data may contain 
errors stemming from the use of measurement equipment with limited accuracy, etc, It is necessary 
to investigate the influence of such errors on the computed solution. In particular, we would like 
to beware of systems in which small errors in the data will cause large changes in the computed 
solution, i.e. "ill-conditioned" systems. 

Consider, for example, the system (suggested by Dancis [8]) whose augmented table is given by 

0.1 --1 0 0 0 

0 0.1 --I 0 0 

0 0 0.1 - 1  0 

0 0 0 0.1 --1 

0 0 0 0 1 

0.1 

1 

0.1 

1 

1 

(35) 

By back-solving we obtain X(5) = 1, X(4) = 0, X(3) = 1, X(2) = 0 and X(1) = 1. If we change the 
right-hand side a little, by changing the bottom element of the sixth column I to 1.01, yet leaving 
all the other entries unchanged, the solution obtained is X(5)= 1.01, X(4)=0.1,  X(3)= 2, 
X(2) = 10 and X(I) = 101. A change of 1% in one entry caused a very considerable change in the 
solution. System (35) has an obvious pattern, needs no triangularization, and thus the laboratory 
participants can construct larger, similar systems where the above phenomenon is even more 
pronounced. 

The laboratory instructor should emphasize the distirtction between errors stemming from the 
very nature of a given system 011-conditioning) and errors resulting from the method of solution. 
The latter can be dealt with by modifying the algorithm, while ill-conditioning is intrinsic and 
cannot be removed even by a sophisticated modification. In an ill-conditioned case the solution 
is hypersensitive to changes in the data. Furthermore, if we substitute the computed solution in 
the given equations, we will find that even though the equations are satisfied to a high accuracy, 
the computed solution column might differ considerably from the true solution column. 

The possibility of ill-conditioning impairs the credibility of the computed solution, and thus 
we would like to have some a priori indication on the conditioning of a given system (see 
Ref. [7, p. 517]). 

We would like to emphasize that in this module we had no intention of presenting the entire 
subject of solving linear systems, with all the underlying theory. Nor has our intention been to 
present a numerical approach for teaching linear algebra. Our goal has been to show how to 
introduce these subjects to students unfamiliar with matrix theory, but willing to take advantage 
of the new computing opportunities. These opportunities are created by an increasing number of 
microcomputers appearing in various educational institutions. 

6. COMPUTER ROOT EXTRACTION BY A P R I O R I  DESIGN 

In this module we show how to construct iterative formulas for the extraction ofk th  roots which 
are of built-in desired order by a priori design. Contrary to the usual practice in which a certain 
iterative procedure is suggested and then analyzed for its order, we are taking the reverse point 
of view. That is to say, our point of departure is a desired, prescribed order of convergence, and 
we employ purely algebraic means to construct an iterative procedure possessing this order. 
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The accompanying error decay is shown to equal (1/2)" for iterations of  pre-designed order r. 
The computer-educational aspects are stressed throughout, as is the suitability of  the algorithms 
for a computer library. 

We start by showing that for the extraction of  the square root of  s > 0, it suffices to 
consider the reduced range 1 ~< s < 4, so that 1 ~< x/~ < 2 (for details of  this range reduction 
see Ref. [9, p. 305]. Initialization of  the iterations with x0 = 1.5 will thus guarantee that 
Ix0- l <½. 

As mentioned above, our point of  view is opposite to the usual practice. That is to say, we wish 
to construct iterations x, approximating x/~ which are to obey the inequalities 

] x , + t -  x/~[ <~ KIx  . - x/~s[ 2, K constant, (36) 

i.e. be of  second order. For simplicity we assume K = 1. Let us investigate the consequences of  
inequality (36) and how they compare with the performance of  bisection. In this way the laboratory 
participants will be motivated to search for higher order methods even without knowing a priori 
what specific form they might take. Repeated use of  inequality (36) with K = 1 yields 

="+', (37) 

leading to 

I x , -  x/~l ~< (1/2) 2" . (38) 

We may compare inequality (38) with the corresponding result for bisection in which the right-hand 
side is (1/2)". For example, n = 5 iterations make Ixs - x/~l ~< (1/2) 32 < (1/2)10 -9, whereas n = 31 
iterations are required to achieve that accuracy with bisections (see Ref. [9, p. 311]). 

With a view towards constructing a second order method, let us write 

x, +, - x/~ = (x. - x/~)2, (39) 
0t 

and try to choose ~t judiciously. We may write equation (39) in the form 

x . + , - x f s =  x 2 + s  2x"x/~, (40) 
0t ~t 

and observe that if we choose ~t = 2x,, the quantity x/~ disappears from equation (40). Thus we 
are left with the iterative formula 

which has the built-in property 

x2"+s=~ x, , (41) 
x,+ i = 2x, 

x, +, - x/~ = (x, -- x/~) 2 (42) 
2x, ' 

by equation (39). The laboratory instructor should point out that equation (41) has first been 
obtained by Heron of  Alexandria (about 100 B.C.) by an entirely different approach. Using 
methods of  differential calculus, Newton and Raphson arrived at the same result as a special case 
of their method of  tangents. A method based upon the comparison of  the areas of  a rectangle and 
a square can be found in Ref. [10]. All the above approaches lead to some iterative formula which 
is a posteriori shown to be of  second order. As mentioned before, our approach goes precisely 
in the opposite direction in that it advocates construction of  higher order iterations by a priori 
design. 

Reference to equation (42) shows that its left-hand side is non-neptive,  for all values of  n, once 
we have chosen x0 > 0. It follows that x,  I> ~ / s  for all values of  n. Onthe  other hand 1 ~< ~ < 2 
so that x. i> I, and we have 

0 ~< x , + , -  x/~ ~< ~ x . -  x/~) 2 ~< ( x . -  x/~) 2. (43) 
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Taking stock of  what we have done, we find that our goal expressed by inequality (36) has actually 
been realized, with K = 1 (we could even take K = 1/2 if we wanted to). Accordingly, iterations 
(41) supply us an even better version of  inequality (38) in the form 

0 ~< xn - ~ ~< (1/2) 2". (44) 

Had we not been so generous in inequalities (43) and taken K = 1/2, the resulting error estimate 
would have been somewhat sharper but more cumbersome. For  the purpose of  comparison with 
the estimate for bisection, the laboratory participants will find the form (44) much more convenient 
since it juxtaposes the rapid decay (1/2) 2. with the relatively slow (1/2) ~. 

Another point worthwhile mentioning is the sensitivity of  the quality of  approximations to 
the initial value x0. Had we somehow been able--without excessive computational labor - - to  
find a better initial guess x0, satisfying I x 0 -  x / ~ ] ~  < 2 < 1/2, the above analysis would have 
led to 

Ix~-- x/~l ~< 22", (45) 

with correspondingly fewer iterations for a prescribed accuracy. As a "starred" exercise, the better 
laboratory participants should be asked to show that the choice x0 = (8s + 17)/24 satisfies 
Ix0 - x/~ [ ~< 1/24 = 2 for 1 ~< s < 4, so that the error decay is very fast indeed. 

We note that since I x 0 -  v/s[  ~< 1/2, one correct binary digit in our initial approximation is 
guaranteed. By inequalities (43), the number of  correct digits is doubled in each iteration, which 
serves again to explain why few iterations suffice. The motivation to search for methods of  
even higher order is thus very natural, as are generalizations to cube roots and k th  roots (see 
Refs [9, 16]). 

7. P O L Y N O M I A L  F U N C T I O N  A P P R O X I M A T I O N S  

Approximations by polynomial interpolation is discussed at the pre-calculus level. Special 
attention is given to the removal of  "black box" procedures, and inherent concepts such as quality 
of  approximation, relative error and computational efficiency are examined. A suitable example 
is given, demonstrating the actual construction of  computer library functions. This subject, in 
particular, sheds light on the "mystery" confronting practically every user of  computers: when a 
computer is instructed to evaluate a given complicated expression, how does it come up with the 
required answer so accurately and so fast. 

In the following let us suppose that we are faced with the problem of  evaluating a func t ion f (x )  
for various values of  x in the interval [a, b]. We shall assume that we know the values o f f ( x )  at 
(n + 1) specific points x0, x~, x: . . . . .  xn in that interval. It is best, in the laboratory, to proceed with 
a concrete example familiar to the students, f (x) = sin x. The interval [a, b] will be [0, rr/2], so that 
the evaluation of  y = sin x in the interval will furnish us with the values of  sin x, for all x (in 
radians) via trigonometric identities familiar to the students. 

For  definiteness let us choose n = 6 (i.e. seven points), x 0 = 0 so that Y0 = sin x0 = 0, and 
x6 = n/2 so that Y6 = sin rr/2 -- 1. The remaining five points, Xl . . . . .  xs, will be distributed evenly 
over the interval [0, n/2], in the absence (at this stage) of  any motivation to do otherwise. Moreover, 
we now have x~ = it/12, x 2 = re~6, x 3 = rr/4, x4 = rr/3, x5 = 5rr/12, and the corresponding values 
of  Yt . . . . .  Y5 can be easily obtained. Thus Y2 = sin rr/6 = sin 30 ° and Y4 = sin n/3 = sin 60 ° are 
available from the 30°-60°-90° triangle, and Y3 = sin ~/4 = sin 45 ° is known from the isosceles right 
triangle. Furthermore, yt = sin nil2 = sin 15 ° can be obtained by using the half-angle formula, 

and we get Yl = x/{(1 - cos 30°)/2} = ~ / 2 .  Finally, Ys = sin 5n/12 = sin 75 ° = cos 15 ° = 

x/{(1 + cos 30°)/2} = x/(2 + x/3)/2, again by using the half-angle formula for the cosine. In this 
way we obtain the following seven pairs of  values (correct to l0 decimal figures): 

x0 = 0.0000000000, Y0 = 0.0000000000 

xl = 0.2617993878, Yl = 0.2588190451 

C.A.M.W.A. 19/3---C 
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x2 = 0.5235987757, 

x3 = 0.7853981635, 

x4 = 1.0471975513, 

x5 = 1.3089969392, 

x6 = 1.5707963270, 

Y2 = 0.5000000000 

Y3 = 0.7071067813 

Y4 = 0.8660254039 

Y5 = 0.9659258263 

Y6 = 1.0000000000. (46) 

The use of standard trigonometric identities enables us to add more points to the seven given above, 
if we so desire. We shall, however, confine the present discussion to the seven specific points 
displayed above (i.e. n = 6), which will henceforward be referred to as nodes. 

Our objective is to evaluate the function y = sin x when its values at the points x0, xt . . . . .  x6 
are known. The simplest procedure towards attaining this goal is to approximate sin x by a 
polygonal line composed of line segments joining successive pairs of nodes. The equation of the 
segment joining (x j ,&)  and (xj+ l, Yj+ t) is readily found to be 

p , ( x ) = X - - X j + l y j . +  X S'_XJ . 
Xj--XJ+ l XJ+ I - x y j + I '  Xj<~X ~<X:+t. (47) 

Equation (47) holds of course for j =0 ,  1 . . . . .  6, and the notation P~(x) refers to the fact 
that equation (47) represents, for each j,  a segment of a straight line, i.e. a polynomial of the 
first degree. With a view towards generalizations of equation (47) in the sequel, let us observe 
that for x = x j  the second term on the right of equation (47) vanishes, while the coefficient 
of yj in the first term equals unity, and thus P t ( x j ) =  yj. Analogously, PI (xj+ i ) =  Yj+t. Clearly, 
seven expressions of type (47), one for each value of j, will represent the required polygonal 
approximation to sin x. 

An equation of type (47) is referred to as an interpolation formula, since it furnishes us with 
approximate intermediate values of the function we wish to evaluate. Thus the approximation 
generated by equation (47) constitutes a piecewise linear interpolation. 

When carrying out the above procedure in the mathematical laboratory, the question should be 
raised as to the possibility of using the data in equations (46) to construct a better approximation 
to sin x via a method which yields a tighter local fit. The most natural thing to do is to take the 
nodes three at a time, and pass a parabola through each triplet of points. In our case we would 
have three such triplets of the form (xj_ 1, & -  1), (xj, yj), (xj+ i, Yi+ ~), fo r j  = 1, 3, 5, respectively. The 
equation of each such parabola should be an extension of equation (47). There is a unique parabola 
passing through a given triplet of points (two distinct such parabolas would imply three distinct 
roots of a quadratic equation, which is clearly impossible). In order to obtain this requested 
extension of formula (47), we shall use a sum of three terms corresponding to the three yjs, such 
that the coefficient of each yj is a quotient of quadratic rather than linear expressions. Moreover, 
each coefficient should vanish for two of the xjs and equal unity for the third one, corresponding 
to its &. We are thus led to 

(X -- Xj_ I)(X -- Xj+ t )  (x  - x , ) ( x  - x ,+ , )  1) y ' - I  
& ( x )  = (xj_, - xj)(xj_ 1 - xj+ 

(x - xj_, ) (x - xj) 
+ ( x j + l - - x j _ l ) ( x j + t - x j )  yj+t '  xj_, <~x <~xj+t. (48) 

Each term above represents a parabola, hence so does the sum, which is therefore denoted by 
P2(x). As a check, if we substitute x = xj_ 1, say, we find that the coefficient of yj_ i equals 
unity while the two others vanish; hence P2(xj_ 1)= Yj- t .  Similarly, we find P2(x j )=y j  and 
P=(xj+l) =Yj+I- 

Summing up, we may now construct three consecutive parabolic'arcs, of form (48), which 
together gives us a piecewise quadratic interpolation for sin x with the aid of the seven nodes in 
equation (46). 
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At this point the instructor in the mathematical laboratory should encourage the question of 
extending the process described heretofore beyond quadratic interpolation. Could one pass two 
successive cubic polynomials through the first four nodes and the last four nodes, respectively? This 
would lead to the following general question: why not pass one polynomial of nth degree through 
all (n + 1) nodes and use it to approximate the given functionf(x)? (In our casef(x)  -- sin x and 
n = 6.) It turns out that such a polynomial does indeed exist and, moreover, is unique. One denotes 
this polynomial by P,(x) and refers to it as the interpolating polynomial of degree n [coinciding 
with the given f ( x )  at the nodes]. We note that just as in the case of linear and quadratic 
approximations, the general interpolating polynomial P,(x) is of degree n which is one less than 
the number of given nodes. Thus in our specific case y = sin x with seven nodes, we shall eventually 
seek the polynomial of degree six which will do the job. 

Returning to the general case it seems reasonable, in view of equations (47) and (48), to look 
for an n th degree polynomial of the form 

,~ ~(x) 
P.(x) = j~=o ~ yj' (49) 

where Nj(x) is an nth degree polynomial such that Nj(xj)/Dj = 1 and Nj(xk) = 0 for k :~j. If we 
look again at equations (47) and (48), we may conclude that 

N j ( x )  _ ( x  - X o ) ( X  - x , ) .  . . ( x  - x j _ , ) ( x  - x j + ~ ) .  . . ( x  - x . )  
(50) 

Dj (Xj--Xo)(Xj--Xl)'''(Xj--Xj_I)(Xj--Xj+I)'" "(Xj--Xn)" 
We verify that equation (50) indeed represents an nth degree polynomial (with the required 
properties) since the factor ( x -  xj) is missing in the numerator. For j = 0 and j = n, the first 
and last factors, respectively, of numerator (and denominator) will be the missing ones. The 
interpolation polynomial given by equations (49) and (50) is due to J. U Lagrange (1736-1813) 
and bears his name. 

For computational purposes when (n + 1) specific nodes are given, we can rewrite equations (49) 
and (50) in the form 

P,(x) = a,x" + a,_ ix"- i + . . .  + al x + ao, (51) 

in which the coefficients a0, a~ , . . . ,  a, are expressed in terms of the xjs and yjs. While this 
preliminary work is perhaps considerable, we must impress upon the student that it is done only 
once. Thus, using equation (51) for repeated computations in order to approximatef(x) for various 
values of x, is computationally far more efficient than using equations (49) and (50). 

Up to this point we have not yet discussed the cardinal question of the quality of approximation 
we can expect from P,(x). That is to say, when using P,(x) as an approximation tof(x) ,  for various 
values of x in [a, b], what are the errors incurred, and what can be said about their magnitude? 

We are now ready to use the seven nodes in equations (46) and actually construct in the 
mathematical laboratory the polynomial P6(x) which approximates sin x in [0, rr/2]. This P6(x) is 
then evaluated for values of x increasing from x = 0 to x --- n/2 with increments of n/180, say, 
which correspond to increments of one degree. The values thus obtained are compared with the 
corresponding values of sin x given by the computer's built-in sine function, and the differences 

R(x) = sin x - P6(x) (52) 

are recorded and plotted (on the screen and on hard copy if desired). The function R(x) is referred 
to as the remainder, and it should be plotted using an appropriate scale which accentuates its 
behavior and thereby the quality of approximations. We actually carried out the computations 
indicated above and found that 

IR(x)l = Is inx -P~(x)l <¼10 -6, O~<x ~< ~/2. (53) 

This means that a sixth degree polynomial, based upon just seven given nodes, furnishes us with 
accuracy between five and six decimal figures. We verified the claim made in equation (53) by 
repeating these computations in the mathematical laboratory, using increments of n/360 and n/720. 
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The use of yet smaller increments will not change the picture. In order to see the behavior of the 
remainder R(x) in a vivid way, we plotted 106R(x) against x and obtained the graph in Fig. 3. 
The accuracy obtained by approximating sin x with P6(x) is so high that had we plotted sin x and 
P6(x) simultaneously, the two graphs would have been virtually identical, and in any case 
practically indistinguishable. It is only when we plot the magnified remainder R(x) that we arc able 
to scc it altogether, and study its behavior. 

At this point the laboratory instructor must not fail to underscore the fact that P~(x) is 
compared to the computer's built-in sine function which by itself, in turn, is based upon some 
approximation. However, since the built-in sine function carries a very high accuracy of, say, 
10 decimal figures, its comparison with P6(x) can bc regarded as the comparison of P6(x) with 
thc true sine function. Moreover, this sheds light upon the methods by which built-in functions 
can be constructed, 

Wc turn now to a closer study of the behavior of R(x) in the graph, particularly the error defined 
by IR(x)l. 

(a) R(x) vanishes, naturally, at our seven equidistant nodes. Elsewhere R(x) 
oscillates between positive and negative values, reflecting the fact that P6(x) 
winds and wraps itself around sin x. 

(b) If we were to add two more nodes, say, it is suggested we place them near the 
interval endpoints, say at x = 7~/24 and x = 11~/24 (corresponding to 7.5 ° and 
82.5°). This would tend to decrease the error IR(x)l where the graph shows its 
magnitude to be larger than elsewhere. 

(c) For the same reason we could redistribute our seven nodes if we must do with 
just seven. It stands to reason to shift the second (and perhaps also the third) 
node towards the left endpoint and act analogously with the sixth (and seventh) 
node towards the right. The purpose of doing that is to try to "smear" the error 
as uniformly as possible throughout the interval and thus decrease its maxima. 

(d) If the situation described above for sin x is any indication of what happens in 
general (with more advanced methods it can be shown that indeed it is), then 
one should choose a higher density of nodes towards the interval's endpoints, 
and a lower density around its center. 

(e) We stress that the attempt to smear the error uniformly over the interval does 
not require placing the first and last nodes at the endpoints of the interval. 
Allowing the positions of the first and last nodes to vary as well, may help to 
smear the error more uniformly. 

At this juncture the laboratory participants should be encouraged to experiment by trial and 
error with the location of the nodes, given their number. A few more nodes may also be added 
but their number should be limited. The guiding principle is that efficiency be maintained. That 
is to say, the attainment of higher accuracy must not be offset by unreasonable, additional 
computational effort caused by adding too many nodes. For example, it is certainly unreasonable 
to use an approximating polynomial of degree 100 in order to obtain highly accurate values of sin x. 

.1 t 
. 1 ~  xx 

IOSR{X) - lOS[sin X-Ps(X)] 

~ -x 

Fig. 3 
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The study of this section serves as a natural point of departure for a number of profound 
mathematical questions whose full treatment is way beyond our scope. Given a functionf(x) over 
an interval [a, b] which we wish to approximate by an interpolation polynomial P,(x)  for a given 
n. Then, 

(a) Do there exist optimal nodes, in the sense that the maximum value of 
IR(x)l = I f ( x )  - P~(x)l for all x in the interval is minimized? In other words, 
can we minimize the maximum deviation of Pn(x) from f (x)?  

(b) If such an optimal polynomial exists, is it unique? If so, 
(c) does this optimal polynomial possess characteristic properties, leading to some 

procedure by which it can be constructed? 

The Russian mathematician P. Chebyshev showed that under rather general conditons the answers 
to the questions above are in the affirmative. This polynomial is called the corresponding minimax 
polynomial since it minimizes the maximum deviation, and indeed it oscillates about f (x )  in a way 
that smears the error uniformly (equal ripple property). These results may be verified in the 
mathematical laboratory for a very simple case--the approximation of a convex (concave) curve 
by a straight line. 

Actually, for purposes of a computer library function, the relative error should be controlled 
rather than the absolute error. This important topic should definitely be part of this laboratory 
assignment (see Ref. [11]). 

The subject matter covered in this module appears to us to be extremely suitable for the 
mathematical laboratory. It sheds light on the "mystery" confronting practically every user of 
computers: how, when a computer is instructed to evaluate a given complicated expression, does 
it come up with the required answer so accurately and so rapidly? 

8. THE COMPUTATIONAL POTENTIAL OF RATIONAL APPROXIMATIONS 

In this laboratory assignment, rational approximations are introduced via typical significant 
examples, and are based on very rudimentary concepts from calculus. Using interpolative 
techniques, approximations with nearly equal ripple errors are constructed. The advantage of 
rational over polynomial approximations--when more than two parameters are involved--is 
demonstrated, revealing the computational potential of rational approximations. 

We suggest the introduction of rational approximations, within the framework of the 
mathematical laboratory, via specific functions, such as In x and x/~. Besides being well known 
to the laboratory participants, and part of every computer library, they possess two desirable 
properties: 

(a) Range reduction can be easily performed, i.e. in order to compute them for any 
positive argument t, it suffices to approximate these functions in a relatively small 
interval. This is so, since they satisfy 

In t -- ln(x • 2 m) = In x + m.  In 2, (54) 

x/~ = x//-x-" 4m = x/~ • 2 m, (55) 

where x is the appropriate number in [1, 2), in the case of In x, and in [1, 4) for 
the square-root (m is an appropriate integer in each case). In addition to 
approximating In x in [1, 2], the computation must include the multiplication of 
m by the constant In 2, which has to be precomputed once and for all. Following 
the approximation of x/~ in [1, 4], a binary shift of m places is necessary. 

(b) Both functions are concave, i.e. a chord connecting any two points on the graph 
of each function (in the relevant interval) lies entirely below the graph. This 
property enables us to use simpler and more elementary proofs later on. This is 
part of our general philosophy in the mathematical laboratory: sacrifice some 
generality in order to gain simplicity in the mathematical proofs, but maintain 
rigor throughout. 
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At this point a close look should be taken at the approximation of In x near x = 1, since in this 
neighborhood a small absolute error does not imply a small relative error. If  the laboratory 
participants are not thoroughly familiar with the concept of relative error and its practical 
importance, this is the time to acquaint themselves with the subject. Assuming rudimentary 
knowledge of  calculus, including 

In x 
lim = 1, (56) 
x~lX-----1 

the approximation of  In x near x = 1 can be handled in one of the following two ways: 

(a) Approximate In x/(x - 1) in [1, 2], and then multiply the approximant by (x - 1). 
This method is equivalent to removing the root of the relevant function before 
the construction of the approximation. 

(b) Approximate In x in [1, 2] and use this approximant only in the interval [1 + 6, 2]. 
In the interval [1, 1 + 6], for a properly chosen 6, use (x - 1) to approximate In x. 
If  the laboratory participants have the appropriate background, they may use 
additional powers of (x - 1) as well. 

In the computational assignment presented in this module it is not our intention to introduce 
the subject of rational approximations with all generality, even for the two above mentioned 
functions. We will concentrate on rational approximations with two or three parameters, which 
will be determined so as to obtain the "best" possible approximations in a sense relevant for a 
computer library. By "best" for a computer library we mean minimizing (or nearly minimizing) 
the maximal deviation in [a, b] of the approximant A(x)  from the function F(x). In other words 
we are interested in reducing the error 

max I F ( x ) -  A(x)[ (57) 
a<~x<<.b 

as much as possible. 
The laboratory instructor will of  course realize that we are actually laying the foundations of 

approximations in the maximum norm, for a possible study later on. 
We will demonstrate the computational potential of rational approximations with three- 

parameter approximations of In x, 1 ~< x ~< 2. Such approximations can be represented in the 
following three main forms: 

Parabola: 

Hyperbola: 

"Inverse parabola": 

(px + q)x + r, (58) 

v 
u + ~ (59) 

X + W '  

(x + b)x  + c" 
(60) 

In each of  these forms the sum of  the degrees of the numerator and the denominator is 2. All three 
are represented in a computationally economic form. The evaluation of the first involves 2 additions 
and 2 multiplications, the second--2 additions and 1 division and the third--2 additions, 1 
multiplication and 1 division. In all those approximations, three interpolation points and four 
critical points (two of which are the interval endpoints) are expected (see Ref. [12]). The best 
approximation in each of the t h r ~  forms can not be found analytically, so we will adopt the 
interpolative approach. In this approach, we will construct approximations that will concide with 
the relevant function at three prescribed points. These points will be chosen from a table of 
abscissas at which the values of  the relevant function are accurately known. To clarify this idea, 
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let us examine the function y = In x in the interval [1, 2]. For the preparation of  this table, we 
calculate once the constant t = 21/32, by five successive square-root extractions, as described in 
Ref. [9]. In addition, we compute the constant z = (In 2)/32 to a desirable high accuracy. Now, the 
x values in the table will be: t °, t ~, t 2 . . . . .  t 3z, and the corresponding known values o f y  = In x are: 
0, z, 2z . . . . .  32z. From this table we will select our interpolation points. At first, it would seem 
natural to choose initial interpolation abscissas close to 1.25, 1.50 and 1.75. However, from our 
experience with two-parameter approximations (see Ref. [12]) we know that it is preferable to 
choose the first and last abscissa closer to the interval endpoints. Hence we recommend choosing 
initial interpolation points (from the table) whose x values are nearly equal to 1.1, 1.5 and 1.9. From 
Table 3 it is clear that the initial values of x should therefore be 

x~ = 1.090508, x~ = 1.509164, x3 = 1.915206. (61) 

Let us start the three-parameter approximations with parabola (58), i.e. p x 2 +  q x  + r. The 
collocation of this parabola with In x at (x~, yl ), (x~, Y2) and (x3, Y3) requires 

P =(Y3--Y2\x3 _ x2 x2Y--22--Y-~I)/(X3--XI)' 

q = Y2 - Y_________~l p (xl + x2), (62) 
x 2 - -  x I 

Y2 ~ Yl 
r = y ~  - -  x + p x l x  2. 

x 2 - -  x !  

The laboratory instructor will observe that p, q and r given by equations (62), actually stem from 
Newton's form of  the interpolation polynomial of order 2. 

As pointed out above we start with xl,  x~, x3 given in equations (61), i.e. the points numbered 
4, 19 and 30 shown in Table 3. Next, the main program should be run, tabulating the differences 
between In x of the computer's library and our parabolic approximation. These differences 
represent the error function for values of x increasing from 1 to 2 with a desired increment (0.005 
for example). This table should be accompanied by a corresponding graph. 

After inspection of the resulting table, we changed the interpolation points (using Table 3) 
so as to get smaller error ripples. Thus, the resulting approximation gradually approached the 
state of having the equal ripple property with four critical points. Two of those points are in 
the interior, the two others being the endpoints of the relevant interval (1 and 2 in our case). The 
best interpolation points in Table 3 were thus found to be points No. 2, 17 and 30, for which the 
error ripples are closest to being equal. With those best interpolation points, the values of the 
error function 

E l ( x )  = In x --  ( p x  ~ + q x  + r) ,  (63) 

at the four critical points, were found to be 

El (1.00) = -- 0.0027, 

El (1.20) = +0.0035, 

El (1.72) = -- 0.0036, 
(64) 

E1 (2.00) = +0.0038. 

Inspecting equations (64), we decided to further improve the error ripples, by using interpolation 
points from a denser table, generated with t -- 2 I/l,~ and z = In 2/128. Since this new table is quite 
long, we show in Table 4 only its relevant parts. 

Using this table we continued to "improve" the approximation. The best interpolation points 
in Table 4 found in this manner are points No. 9, 69 and 121. 
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Table 3 

k x = t k y = k z  

0 1 . 0 0 0 0 0 0  0.000000 
1 1.021897 0.021661 
2 1.044274 0.043322 
3 1.067141 0.064983 Tab~ 4 
4 1.090508 0.086643 

k x = I k y = k z  
5 1.114387 0.108304 
6 1.138789 0.129965 0 1.00000 0.000000 
7 1.163725 0.151626 ! : : 
8 1.189207 0.173287 6 1.033025 0.031491 
9 1.215248 0.194948 7 1.038634 0.037906 

10 1.241858 0.216608 8 1.044273 0.043322 
II 1.269052 0.238269 9 1.049944 0.048737 
12 1.296840 0.259930 l0 1.055645 0.054152 
13 1.325237 0.281591 : : : 
14 1.354256 0.303252 63 1.406572 0.341158 
15 1.383911 0.324913 64 1.414209 0.346574 
16 1.414214 0.346574 65 1.421888 0.351989 
17 1.445182 0.368234 66 1.429609 0.357404 
18 1.476827 0.389895 67 1.437371 0.362819 
19 1.509164 0.411556 68 1.445176 0.368234 
20 1.542212 0.433217 69 1.453023 0.373650 
21 1.575982 0.454878 70 1.460913 0.379065 
22 1.610492 0.476539 71 1.468845 0.384480 
23 1.645757 0.498199 72 1.476821 0.389895 
24 1.681794 0.519860 73 1.484840 0.395310 
25 1.718621 0.541521 i : i 
26 1.756254 0.563182 118 1.894565 0.638995 
27 1.794711 0.584843 119 1.904853 0.644410 
28 1.834010 0.606504 120 1.915196 0.649825 
29 1.874170 0.628165 121 1.925595 0.655241 
30 1.915206 0.649825 122 1.936050 0.660656 
31 1.957146 0.671486 : : : 
32 2.000000 0.693147 128 2.000000 0.693147 

The resulting error function was found to have the following four extremal values: 

El (1.00) = -- 0.0030, 

El (1.22) = +0.0035, 
(65) 

El (1.72) = --0.0036, 

E](2.00) = +0.0033. 

Obviously these results can be further improved by using even denser interpolation points. 
However, equations (65) suffice for our purposes, as will be seen in Fig. 4. 
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Fig .  4 



Microcomputer laboratories in mathematics education 33 

The deviations in equations (65) give a clear indication of  the quality of parabolic approximation 
to In x in [1, 2]. The approximating parabola with error ripples given by equations (65) is 

P(x )  = -0.240035x2 + 1.406915x - 1.163814. (66) 

We will now turn our attention to the construction of a rational approximation of form (59), 
i.e. u + v/(x + w). By requiring this hyperbola to coincide with y = In x at (x~, y~ ), (x2, y:) and 
(X3, Y3 ), we get the following formulas for the coefficients u, v, w: 

(X3 - -  X2 ) (x2Y2 - -  X I  Yl ) - -  (X2 - -  X1 ) (x3Y3 - -  x2Y2) 
W - -  

(Y3 -- Y:) (x: -- xl ) -- (Y2 -- Yl )(x3 - x:) ' 

( y a - - Y E ) ( X 2 y j - - x l y l ) - - ( y 2 - - y l ) ( x a y a - - ~ y 2 )  
U ~ 

( y 3 - - Y 2 ) ( X 2 - - X I ) - - ( y 2 - - y l ) ( X H - - X 2 )  
(67) 

v = ( y ,  - u ) ( x ,  + w ) .  

As our initial interpolation points, we took points 9, 69, 121 from Table 4 (which yielded the 
best parabolic approximation). After improving our hyperbolic approximation using Table 4, we 
found the best points in the table to be points No. 9, 64, 119. The hyperbolic approximation with 
these points was found to be 

5.698596 
R(x )  = 2.361334 (68) 

x + 1.414210' 

with extremal error values of 

E:(1.O0) = -0.0009, 

E:(1.19) = +0.0008, (69) 

E2(1.68) = -0.0008, 

E2(2.00) = +0.0009. 

Thus the maximal error of our rational-hyperbolic approximation, with almost equal error 
ripples, is about (1/4) of  the corresponding error of the polynomial-parabolic approximation. This 
result demonstrates the potential of rational approximations, which will be further emphasized 
below. 

For completeness we repeated the whole process with the approximation of the form (60), i.e. 
a/(x 2 + bx + c). In this case, even after improvement of the choice of interpolation points, the sizes 
of  the error ripples were about 30 times those of the parabolic approximation. Thus we have 
decided to exclude the error function corresponding to this third approximation from Fig. 4, in 
which we display 

El (x) = In x -- P(x) ,  

E2(X ) = In x -- R(x), (70) 

where P( x )  and R ( x )  are given in equations (66) and (68), respectively. 
Although our results have been limited to a three-parameter approximation of In x, the rational 

approximation technique has emerged as a powerful computational tool, whose advantages are 
even more pronounced when additional parameters are introduced (see Ref. [13, p. 161]). 

The superiority of rational approximations over polynomial ones, demonstrated above for In x, 
is not just a lucky strike. Corroborating evidence for the computational potential of rational 
approximations may be found in Refs [12, 15] (see also Ref. [13, Chap. 9, in particular Table 9.3. l]). 

9. C O N C L U D I N G  REMARKS 

We believe that the teaching of mathematics via computational laboratory modules, as described 
heretofore, supplies the student with a fertile ground for mathematical "experiences", never 
available before the personal computer era, tending to enhance and cultivate his mathematical 
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intuition. Moreover, when exposed to these and similar modules, the student is molded in the spirit 
of  numerical applied mathematics at an early stage---so crucial to his entire mathematical point 
of view. 

Numerical experiments should be part of modern mathematical education. Indeed, there has 
always been an experimental side to mathematics (see Ref. [14, p. 163]). As Euler insisted, "the 
properties of numbers have usually been discovered by observation, well before their validity has 
been confirmed...". Euler stated also that "it is by observation that we increasingly discover new 
properties, which we next do our utmost to prove". Computers have greatly increased our 
capabilities of observation and experimentation in mathematics [14]. It is in this spirit that we 
suggest the introduction of the described modules into the mathematical laboratory. No one doubts 
the indispensability of a series of laboratory assignments for the completion of  an education in, 
say, physics or biology. The microcomputer laboratory, we maintain, plays a similar role in 
mathematical education. 
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