5 research outputs found

    A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

    Get PDF
    The authors gratefully acknowledge the financial support given for this work by the Swedish National Space Board (NRFP-3 Call), COMSOLÂź advisors and OHB-Sweden for their interest on this topic.Peer reviewedPublisher PD

    Decontamination of Diesel particles from air by using the Counterfog (R) system

    Get PDF
    The existence of particles with diameter under 10m in air is strongly correlated with respiratory diseases. These particles are profusely produced by heating systems, traffic, and Diesel engines creating a serious problem to modern cities. Natural mechanisms removing particles from the atmosphere are too slow to deal with the huge amount of particles daily released by human activity. The objective of this work is to measure the effectiveness of a new technology called Counterfog (R) to eliminate airborne particles. The results show that Counterfog (R) is able to wash out PM10, PM5, and PM2.5 Diesel-generated airborne particles quite efficiently.This work has been funded by the FP7-SEC-2012-1 program of the EU Commission under grant number 312804

    Magnetic and morphological characterization of Nd2Fe14B magnets with different quality grades at low temperature 5-300 K

    Get PDF
    An increasing number of cryogenic devices may benefit from the use of Nd2Fe14B permanent magnets. However, it is necessary to precisely know their behavior because magnetization varies significantly due to Spin Reorientation Transition. In this work, magnetic and morphological characterization of Nd2Fe14B commercial polycrystalline magnets with different quality grades from 5 to 300 K is provided. A set of magnets ranging from N35 to N52 quality have been analyzed. Mean grain dimension as well as material composition elements are provided. Higher quality magnets show smaller mean grain dimensions. Regarding cryogenic temperatures, the well know spin transition effect appears in all the magnets as expected, however, the transition temperature occurs at different temperatures in a range from 112 to 120 K which is lower than those obtained for single crystal samples. Moreover, the relative variation of the remanence from 300 to 5 K is lower than 4% while the maximum expected variation is in average 11%. As extra information, the same analyzes are provided for additional quality grades N40M, N40S, N40SH and N40UH.The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n° 263014

    A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

    No full text
    The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology
    corecore