85 research outputs found

    Phonon Squeezed States Generated by Second Order Raman Scattering

    Full text link
    We study squeezed states of phonons, which allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. We investigate the generation of squeezed phonon states using a second order Raman scattering process. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments.Comment: 4 pages, REVTE

    Quantum Phonon Optics: Coherent and Squeezed Atomic Displacements

    Full text link
    In this paper we investigate coherent and squeezed quantum states of phonons. The latter allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent states. The expectation values and quantum fluctuations of both the atomic displacement and the lattice amplitude operators are calculated in these states---in some cases analytically. We also study the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach.Comment: 6 pages, RevTe

    A Gate-tunable Polarized Phase of Two-Dimensional Electrons at the LaAlO3/SrTiO3 Interface

    Full text link
    Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.Comment: Finalized version containing modifications introduced after peer-review. The results are completely unchange

    Dynamics of entanglement and transport in one-dimensional systems with quenched randomness

    No full text
    Quenched randomness can have a dramatic effect on the dynamics of isolated 1D quantum many-body systems, even for systems that thermalize. This is because transport, entanglement, and operator spreading can be hindered by “Griffiths” rare regions, which locally resemble the many-body-localized phase and thus act as weak links. We propose coarse-grained models for entanglement growth and for the spreading of quantum operators in the presence of such weak links. We also examine entanglement growth across a single weak link numerically. We show that these weak links have a stronger effect on entanglement growth than previously assumed: entanglement growth is subballistic whenever such weak links have a power-law probability distribution at low couplings, i.e., throughout the entire thermal Griffiths phase. We argue that the probability distribution of the entanglement entropy across a cut can be understood from a simple picture in terms of a classical surface growth model. We also discuss spreading of operators and conserved quantities. Surprisingly, the four length scales associated with (i) production of entanglement, (ii) spreading of conserved quantities, (iii) spreading of operators, and (iv) the width of the “front” of a spreading operator, are characterized by dynamical exponents that in general are all distinct. Our numerical analysis of entanglement growth between weakly coupled systems may be of independent interest
    • …
    corecore