155 research outputs found

    Understanding the Involvement of Volunteers in Precollege Outreach Programs: An Exploratory Study

    Get PDF
    Precollege outreach programs are an important resource for improving college enrollment for groups that have been historically underrepresented in higher education. But the ability of these programs to serve all eligible students is constrained by resource limitations. This study uses data collected from case studies of four precollege outreach programs to understand how precollege outreach programs may expand the reach of their programs through the use of one seemingly free resource: volunteers. To address this overarching purpose, the study frames volunteering as a type of prosocial behavior and explores the following three questions: How and why do precollege outreach programs use volunteers? What motivations explain a volunteer’s involvement in a precollege outreach program? How do precollege outreach programs encourage individuals to serve as volunteers? The study concludes with recommendations for program administrators and directions for future research

    GaAs-based dilute bismide semiconductor lasers:Theory vs. experiment

    Get PDF
    We present a theoretical analysis of the electronic and optical properties of near-infrared dilute bismide quantum well (QW) lasers grown on GaAs substrates. Our theoretical model is based upon a 12-band k·p Hamiltonian which explicitly incorporates the strong Bi-induced modifications of the band structure in pseudomorphically strained GaBi x As 1-x alloys. We outline the impact of Bi on the gain characteristics of ideal GaBi x As 1-x /(Al)GaAs devices, compare the results of our theoretical calculations to experimental measurements of the spontaneous emission (SE) and optical gain - a first for this emerging material system - and demonstrate quantitative agreement between theory and experiment. Through our theoretical analysis we further demonstrate that this novel class of III-V semiconductor alloys has strong potential for the development of highly efficient GaAs-based semiconductor lasers which promise to deliver uncooled operation at 1.55 μm

    Dilute bismide alloys grown on GaAs and InP substrates for improved near- and mid-infrared semiconductor lasers

    Get PDF
    We present an analysis of dilute bismide quantum well (QW) lasers grown on GaAs and InP substrates. Our theoretical analysis is based upon a 12-band k·p Hamiltonian which directly incorporates the strong impact of Bi incorporation on the band structure using a band-anticrossing approach. For GaBiAs QWs grown on GaAs we analyse the device performance as a function of Bi composition, and quantify the potential to use GaBiAs alloys to realise highly efficient, temperature stable 1.55 μm lasers. We compare our calculations to measured spontaneous emission (SE) and gain spectra for first-generation GaBiAs lasers and demonstrate quantitative agreement between theory and experiment. We also present a theoretical analysis of InGaBiAs alloys grown on InP substrates. We show that this material system is well suited to the development of mid-infrared lasers, and offers the potential to realise highly efficient InP-based diode lasers incorporating type-I QWs and emitting at > 3 μm. We quantify the theoretical performance of this new class of mid-infrared lasers, and identify optimised structures for emission across the application-rich 3 - 5 μm wavelength range. Our results highlight and quantify the potential of dilute bismide alloys to overcome several limitations associated with existing GaAs- and InP-based near- and mid-infrared laser technologies

    Excitons in type-II quantum dots: Finite offsets

    Full text link
    Quantum size effects for an exciton attached to a spherical quantum dot are calculated by a variational approach. The band line-ups are assumed to be type-II with finite offsets. The dependence of the exciton binding energy upon the dot radius and the offsets is studied for different sets of electron and hole effective masses

    Optical gain in GaAsBi/GaAs quantum well diode lasers

    Get PDF
    Electrically pumped GaAsBi/GaAs quantum well lasers are a promising new class of near-infrared devices where, by use of the unusual band structure properties of GaAsBi alloys, it is possible to suppress the dominant energy-consuming Auger recombination and inter-valence band absorption loss mechanisms, which greatly impact upon the device performance. Suppression of these loss mechanisms promises to lead to highly efficient, uncooled operation of telecommunications lasers, making GaAsBi system a strong candidate for the development of next-generation semiconductor lasers. In this report we present the first experimentally measured optical gain, absorption and spontaneous emission spectra for GaAsBi-based quantum well laser structures. We determine internal optical losses of 10–15 cm−1 and a peak modal gain of 24 cm−1, corresponding to a material gain of approximately 1500 cm−1 at a current density of 2 kA cm−2. To complement the experimental studies, a theoretical analysis of the spontaneous emission and optical gain spectra is presented, using a model based upon a 12-band k.p Hamiltonian for GaAsBi alloys. The results of our theoretical calculations are in excellent quantitative agreement with the experimental data, and together provide a powerful predictive capability for use in the design and optimisation of high efficiency lasers in the infrared

    Theory and design of Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 μ\mum on InP substrates

    Get PDF
    We present a theoretical analysis and optimisation of the properties and performance of mid-infrared semiconductor lasers based on the dilute bismide alloy Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y}, grown on conventional (001) InP substrates. The ability to independently vary the epitaxial strain and emission wavelength in this quaternary alloy provides significant scope for band structure engineering. Our calculations demonstrate that structures based on compressively strained Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} quantum wells (QWs) can readily achieve emission wavelengths in the 3 -- 5 μ\mum range, and that these QWs have large type-I band offsets. As such, these structures have the potential to overcome a number of limitations commonly associated with this application-rich but technologically challenging wavelength range. By considering structures having (i) fixed QW thickness and variable strain, and (ii) fixed strain and variable QW thickness, we quantify key trends in the properties and performance as functions of the alloy composition, structural properties, and emission wavelength, and on this basis identify routes towards the realisation of optimised devices for practical applications. Our analysis suggests that simple laser structures -- incorporating Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} QWs and unstrained ternary In0.53_{0.53}Ga0.47_{0.47}As barriers -- which are compatible with established epitaxial growth, provide a route to realising InP-based mid-infrared diode lasers.Comment: Submitted versio

    Giant bowing of the band gap and spin-orbit splitting energy in GaP <sub>1−x</sub> Bi <sub>x</sub> dilute bismide alloys

    Get PDF
    Using spectroscopic ellipsometry measurements on GaP1−xBix/GaP epitaxial layers up to x = 3.7% we observe a giant bowing of the direct band gap (EgΓ{E}_{g}^{{\rm{\Gamma }}}EgΓ) and valence band spin-orbit splitting energy (ΔSO). EgΓ{E}_{g}^{{\rm{\Gamma }}}EgΓ(ΔSO) is measured to decrease (increase) by approximately 200 meV (240 meV) with the incorporation of 1% Bi, corresponding to a greater than fourfold increase in ΔSO in going from GaP to GaP0.99Bi0.01. The evolution of EgΓ{E}_{g}^{{\rm{\Gamma }}}EgΓand ΔSO with x is characterised by strong, composition-dependent bowing. We demonstrate that a simple valence band-anticrossing model, parametrised directly from atomistic supercell calculations, quantitatively describes the measured evolution of EgΓ{E}_{g}^{{\rm{\Gamma }}}EgΓand ΔSO with x. In contrast to the well-studied GaAs1−xBix alloy, in GaP1−xBix substitutional Bi creates localised impurity states lying energetically within the GaP host matrix band gap. This leads to the emergence of an optically active band of Bi-hybridised states, accounting for the overall large bowing of EgΓ{E}_{g}^{{\rm{\Gamma }}}EgΓand ΔSO and in particular for the giant bowing observed for x ≲ 1%. Our analysis provides insight into the action of Bi as an isovalent impurity, and constitutes the first detailed experimental and theoretical analysis of the GaP1−xBix alloy band structure

    Modelling spin relaxation in semiconductor quantum wells: modifying the Elliot process

    Get PDF
    A model of the Elliot process for spin relaxation is developed that explicitly incorporates the Dresselhaus spin-splitting of the conduction band in semiconductors lacking an inversion symmetry. It is found that this model reduces to existing models in bulk if the scattering matrices are constructed from a superposition of eigenstates. It is shown that the amplitude for intra-subband spin relaxation disappears in quantum wells on the basis of existing models. However, an amplitude due to the Dresselhaus spin-splitting remains, becoming increasingly important as the well becomes narrower. It is also shown that this component does not disappear for scattering between spin states at the same wavevector. It is concluded that for quantum wells and lower dimensional semiconductors that this modified model should be used in analysis of the spin dynamics
    • …
    corecore