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1. Introduction

The manipulation of electron spin in semiconductor materials is key for applications

in both ‘classical’ photonic devices, such as spin vertical cavity surface emitting lasers,

where the spin can be used as an additional label in optical communications, or in

quantum information processing devices where the electron spin is manipulated to

process the information. This requires the understanding of the physics of electron spin

to be reconsidered, particularly when in systems of high confinement such as quantum

wells and quantum dots. The electron spin is strongly coupled to the orbital properties of

the material so material confinement could be expected to strongly effect spin relaxation.

The aim of this paper is to examine this timely issue and develop a formalism for future

use for these applications.

The spin orbit interaction (SOI) is well-known to play an important role in spin

relaxation mechanisms. This is a consequence of its effect on the band structure of a

material. Not only does spin-orbit coupling split the degeneracy of the valence bands

but it modifies the spin properties of conduction band electrons in two important ways.

Firstly, the electronic states are now eigenvectors of the total angular momentum J,

rather that orbital angular momentum L or spin S alone, meaning that they exist as an

admixture of pure spin states [1]. Secondly, in materials lacking an inversion symmetry,

for non-zero k-vector, the degeneracy of the conduction band is split by an energy

proportion to the cube of the k-vector magnitude [2].

The importance of the first of these processes for spin relaxation was first pointed

out by Elliot [1], who considered materials with an inversion symmetry, such as Si and

Ge with the diamond structure. Since the eigenvectors exist as an admixture of states,

there will be a finite amplitude for scattering between opposite spin states, even when

the scattering potential is non-magnetic (i.e. it will not flip spin directly). This is

known as the Elliot process, although very often in the literature it is lumped together

with the Yafet process [3], which is due to the modulation of the spin-orbit interaction

by phonons. The two processes together are then refered to as the Elliot-Yafet (EY)

mechanism. We do not consider the Yafet process in the present work.

The Elliot process has subsequently been considered for materials lacking an

inversion symmetry, notably by Zawadzki and Szymańska [4] and Chazalviel [5]. We

shall refer to these later treatments collectively as the ZSC model for ease of reference.

Although widely used and accepted as a practical implementation of the Elliot process,

this ZSC model does not incorporate the spin-splitting of the bands.

The splitting of the conduction band, first reported and named after Dresselhaus [2],

is formally analogous to the Zeeman splitting of energy levels by a magnetic field and

may be modeled in a two-band model accordingly. The solutions of this model are

the spin eigenstates of an effective magnetic field, with a k-dependent direction. In

this case, most non-magnetic scattering events will not flip the spin, but will scatter

the electron to a new k state in which the spin sees a different effective magnetic

field and is projected into a superposition of new spin eigenstates. The spin then
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precesses around this effective field direction. Further scattering processes progressively

lose memory of any initial spin polarization in a sequence of random walks. This is the

basis of the important D’yakonov-Perel (DP) mechanism for spin relaxation [6]. At room

temperature, the DP mechanism has been shown by Song and Kim [7] to be the dominant

mechanism of spin relaxation in bulk n-type semiconductors. At lower temperatures,

where quantum informatic applications may be more relevant, these authors indicate

that the Elliot-Yafet mechanism becomes more important. Early calculations for bulk

GaAs by Fishman and Lampel [8] suggested that the energy dependent spin relaxation

time τs(ε) will be around 100 ns for both DP and EY processes at an electronic energy of

ε = 10 meV, decreasing to around 6.7 ns and 1.7 ns respectively at the room temperature

thermal energy of ε = 39 meV. Experimental studies for GaAs quantum wells [9–11],

however, report spin relaxation times on the order 10 - 100 ps at room temperature.

The aim of this paper is to treat the physics of these mechanisms consistently by

incorporating the Dresselhaus splitting of the conduction band into the formalism of

the Elliot process. Specifically, we will find that the existing ZSC model is adequate

to treat spin relaxation in bulk material but fails for low dimensional systems, such as

quantum wells, where the introduction of the Dresselhaus terms becomes increasingly

important as the quantum confinement is increased.

Our principal objective will be to derive explicit expressions for the coupling factor

〈φk′↓|φk↑〉 between states of opposite spin in both bulk and quantum wells when the

Dresselhaus spin-orbit splitting is incorporated. We may then use this to (i) obtain

an estimation of the spin relaxation time in terms of elastic momentum relaxation

times for the associated non-magnetic scattering potential and (ii) provide a theoretical

framework for developing more detailed models involving, for instance, non-isotropic

scattering potentials or inelastic scattering via polar optical phonons.

A general description of the Elliot process is given in Section 2, where we describe,

in general, how spin relaxation may arise via a non-magnetic scattering potential when

the states of the system are an admixture of pure spin states. There, we show how,

for elastic scattering by an isotropic scattering potential, the spin relaxation time may

be expressed in terms of the momentum relaxation time associated with the scattering

potential. For elastic scattering, this expression remains a useful approximation even

for non-isotropic scattering potentials and so may be used to investigate the relative

importance of the Dresselhaus contribution to spin relaxation.

In Section 3, we consider how the ZSC model may be modified, starting with a

description of the Dresselhaus SOI in Section 3.1. We then give explicit results for the

modified model for the bulk case (the details of the derivation being relegated to the

Appendix). By representing the spin as a superposition of the spin eigenstates of the

system, it is then shown in Section 3.3 that the ZSC model remains valid for the bulk

case with only a negligible term (referred to as the Dresselhaus coupling factor) arising

from the Dresselhaus SOI.

Turning our attention to symmetric quantum wells in Section 3.4, we find that

the amplitude for intra-subband scattering disappears in the ZSC model. However, the
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Dresselhaus coupling factor remains, becoming increasingly important as the quantum

well becomes narrower. We will show that it is comparable to the ZSC coupling factor in

bulk for GaAs wells of around 4 nm wide and exceeding it for narrower wells. Hence, we

conclude in Section 4 that this modified version of the Elliot process should be used for

the analysis of spin dynamics in quantum wells and lower dimensional semiconductors.

Finally, in the Appendices, we include both a derivation of Dresselhaus spin-

splitting and the admixture eigenstates using k·p theory for the benefit of the interested

reader, as well as some of the mathematical details involved in the derivation of the

coupling factors.

2. The Elliot process of spin relaxation

As a consequence of the spin-orbit interaction (see Appendix A.1), the periodic part of

the conduction band Bloch state in semiconductor materials becomes an admixture of

pure spin states, which, for instance, may be expressed as

|φk↑〉 = |ak↑〉 |↑〉+ |bk↑〉 |↓〉 , (1)

where the ↑ in the subscript labels the major component of the spin. If we consider the

scattering of a Bloch function |ψk↑〉 = eik·r |φk↑〉 to a state |ψk′↓〉 via a non-magnetic

potential V (i.e. which does not flip spin), we have

〈ψk′↓ |V |ψk↑〉 = Vk−k′ 〈φk′↓|φk↑〉 (2)

and

〈φk′↓|φk↑〉 = 〈ak′↓|bk↑〉+ 〈bk′↓|ak↑〉 , (3)

where we have assumed that the potential V is slowly varying over the scale of primitive

cell and factorized out the integral Vk−k′ =
〈
e−ik

′·r |V | eik·r
〉
. Hence, we will have a finite

amplitude to flip the spin even though V does not flip spin directly.

For elastic processes, we may define a spin-flipping rate using Fermi’s Golden rule

as

W ↓↑
k′k =

2π

~
|Vk−k′|2 |〈φk′↓|φk↑〉|2 δ (εk′ − εk) . (4)

Integrating this over k′, we obtain a total spin-flipping rate W ↓↑
k for the state |φk↑〉. At

this point, the mathematics is simplified by assuming that Vk−k′ is isotropic, which is

true in the important case of deformation potential acoustic phonon scattering. Due to

the action of the delta function, W ↓↑
k is effectively averaged over the angular direction

of k′. Similarly, we may integrate over the angular direction of k to obtain an energy

dependent rate, or in terms of a relaxation time τs,

1

τs (εk)
=

2π

~
|Vk−k′ |2

〈〈
|〈φk′↓|φk↑〉|2

〉〉
ρ (εk) , (5)

where the outer angled brackets imply double integration over the angular directions of

k′ and k and ρ (εk) is the density of states.



Modelling Spin Relaxation in Semiconductor Quantum Wells 5

Meanwhile, the spin-conserving transition gives the momentum relaxation time

1

τm(k)
=

2π

~
∑
k′

|Vk−k′ |2 |〈φk′↑|φk↑〉|2 (1− cosα) δ (εk′ − εk) , (6)

where α is the angle between k and k′. The cosine term emerges from the solution to

Boltzmann’s transport equation for a low electric field for elastic scattering. Typically,

the factor |〈φk′↑|φk↑〉|2 is taken to be approximately equal to unity for small k-vectors

where the energy bands may be taken to be parabolic, so, making the same assumptions

as above and integrating over the direction of k, we have

1

τm (εk)
=

2π

~
|Vk−k′|2

〈〈
|〈φk′↑|φk↑〉|2

〉〉
ρ (εk) . (7)

For non-isotropic processes, such as piezoelectric acoustic phonon scattering, Vk−k′ may

contain terms in cosα, so the exact expressions will differ from that derived above. They

will, however, remain on the same order of magnitude, which suffices for this present

investigation. Combining (5) and (7), we may directly compare the energy dependent

spin and momentum relaxation times via

τm(ε)

τs(ε)
=

〈〈
|〈φk′↓|φk↑〉|2

〉〉〈〈
|〈φk′↑|φk↑〉|2

〉〉 . (8)

Typically, it is found that τm/τs � 1.

Explicit forms for (1) giving the admixture components of the conduction band

state have been found by Zawadzki and Szymańska [4] and Chazalviel [5] on the basis

of the Kane model [12], which we shall refer to as the ZSC model. However, these

expressions did not incorporate the Dresselhaus splitting of the conduction band into

k-dependent spin states in materials lacking an inversion symmetry. This splitting

acts like an effective magnetic field and leads to spin relaxation via the D’yakonov-

Perel mechanism [6], which is often the principal spin relaxation process in bulk and 2D

materials. This spin-splitting and its incorporation into the factor 〈φk′↓|φk↑〉 is discussed

in the next section.

3. Modified Elliot process

3.1. Spin-splitting of the conduction band

In the ZSC model, the overlap factor 〈φk′↓|φk↑〉 is found using fixed spin-states for all k-

states. However, this does not take into account the k-dependence of the spin direction

associated with the Dresselhaus spin-splitting of the conduction band, which arises due

to the spin-orbit interaction in materials lacking an inversion symmetry (a full derivation

is given in Appendix B). The Dresselhaus spin-orbit interaction is often presented in

terms of a two band model of the form

H = H0 +HD, (9)
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where H0 gives the k2 dependent part of the energy and the conduction band splitting

is determined by the Hamiltonian

HD = γD (σ · κ) . (10)

Here γD is the Dresselhaus coefficient and κ is a vector with components

κz = kz
(
k2x − k2y

)
(11)

and cyclic permutations thereof (expressions for γD in terms of band parameters are

given in Appendix A.2 and derived from k ·p theory in Appendix B). The Hamiltonian

may be written explicitly in matrix form as

HD = γD

[
κz κx − iκy

κx + iκy −κz

]
. (12)

The eigenvalues of (12) are

±εD(k) = ±γD
(
κ2x + κ2y + κ2z

)1/2
, (13)

with eigenvectors

∣∣χ+
k

〉
=

[
cos(θ/2)e−iφ

sin(θ/2)

]
,
∣∣χ−k 〉 =

[
− sin(θ/2)e−iφ

cos(θ/2)

]
. (14)

Here, θ and φ are the spherical polar coordinates of the vector κ (not to be confused

with the coordinates of k). Hence, we that the spin states are k-dependent.

From inspection of (11) we see that if k = (k, 0, 0) or kx = ky = kz, then all

the components κi = 0 and hence, from (13), the spin-splitting is zero along the [100]

and [111] directions. Along the [110] direction we have k = (k, k, 0) /
√

2 and we find

εD = γDk
3/2, which may be shown to be a local maximum. Using parameters for GaAs

of γD = 18 eVÅ3 [13] and m∗/m0 = 0.067 [14], we find for εk = ~2k2/(2m∗) = 0.4 eV

along the [110] direction (roughly 10 times the thermal energy 3kBT/2 at 300 K), εD is

around 5 meV.

3.2. Modified eigenvectors

Incorporating the k-dependent spin-splitting of the conduction band, it can be shown

(see Appendix C) that the general form of the periodic part of the conduction band

states in bulk material may be written as∣∣u±k 〉 = U±k
∣∣χ±k 〉 , (15)

where U±k is an operator of the form

U±k = Γ±kUk (16)

and
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Figure 1. Variation of the dimensionless spin-dependent factor Γ±k of (16) multiplying

the conduction band eigenstates for GaAs as a function of band energy along the [110]

direction. Here we have used γD = 18 eVÅ3 [13] to calculate the spin-splitting. As seen

from the scale, this factor is very close to unity for spin, as required for the validity of

the ZSC model in bulk as described in the text.

Uk =

[
a |iS〉+ cK∗ · |R〉+

ib√
2

(K∗ × |R〉) · σ
]
.

(17)

Here we have defined a vector of states via

|R〉 ≡ ex |X〉+ ey |Y 〉+ ez |Z〉 . (18)

and

K = exKx + eyKy + ezKz, (19)

where the ei are unit vectors in the Cartesian directions and the Ki are k-dependent

terms defined in (A.7). These terms include the momentum matrix describing the

coupling of the conduction band with the valence bands, as well as the coupling with

higher conduction bands that gives the Dresselhaus spin splitting. The coefficients in

(17) are given in terms of the band gap εG and spin split-off energy ∆ by

a =
εG (εG + ∆)

D
, (20)
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b =

√
2∆

3D
(21)

and

c =
(εG + 2∆/3)

D
, (22)

where

D =
(
ε2G (εG + ∆)2

+
[
(2/3) (εG + ∆)2 + ε2G/3

]
P 2k2

)1/2
(23)

and P is the Kane momentum matrix defined by (A.3). Lastly, the spin-dependent

factor Γ±k is given by

Γ±k =

√
D2

D2 ± Vk
(24)

where

Vk = εG (εG + ∆) (2εG + ∆) εD(k). (25)

The factor Γ±k remains very close to unity varying only by 1% as the band energy reaches

1 eV along the [110] direction, in which direction the spin-splitting is a maximum (see

Fig. 1).

3.3. Spin relaxation

Inspecting the form of (17), we see that that a general eigenvector is, in fact, an

admixture of pure spin states, brought about through the action of (K∗ × |R〉) · σ
on a spinor. This component of opposite spin is small so, on scattering from one k state

to another by a non-magnetic potential, spin-conserving transitions will be more likely

than spin-flipping ones. However, since the spin components of a state are k dependent,

the spin eigenvectors of the final state will be different. Hence, for a spin-conserving

transtion, the spin will be projected onto a different set of basis states. Since the spin

is now in a superposition of the spin eigenstates of the system (which are themselves

admixtures of pure spin states), it will precess with a Larmor frequency Ωk = 2γD |κ| /~.

The vector Ωk then acts as an effective magnetic field.

Subsequent spin-conserving scattering events randomize the component of spin in

any given direction by randomizing the direction Ωk. This is then spin relaxation via

the D’yakonov-Perel mechanism [6], which is a ‘motional narrowing’ process. That is,

greater interaction with the system gives less time for the spin to precess and so the

spin relaxation time is inversely proportional to the momentum relaxation time.



Modelling Spin Relaxation in Semiconductor Quantum Wells 9

In the ZSC model, spin relaxation is due to spin-flipping transitions via coupling

of the opposite spin-components according to (2) and (3). This form, however, is for

transitions between eigenstates of σz; namely

|↑〉 =

[
1

0

]
and |↓〉 =

[
0

1

]
. (26)

It does not allow for the k-dependence of the spin states. However, as discussed above,

the electron is generally in a superposition of spin states. Otherwise there would be

no D’yakonov-Perel process for spin relaxtion. Let us consider such a superposition of

eigenstates having a principal component of spin |↑〉. The principle spin component of

an eigenvector
∣∣u±k 〉 is

∣∣χ±k 〉, although, as argued above, it will have a small component

of
∣∣χ∓k 〉. Now, |↑〉 may be projected onto to the

∣∣χ±k 〉 states as

|↑〉 =
∣∣χ+

k

〉 〈
χ+
k | ↑

〉
+
∣∣χ−k 〉 〈χ−k | ↑〉 , (27)

so the superposition of eigenstates with this principle component of spin will be weighted

in the same proportion as

|φk↑〉 =
∣∣u+k 〉 〈χ+

k | ↑
〉

+
∣∣u−k 〉 〈χ−k | ↑〉 . (28)

Let us write this in the form of (1) as

|φk↑〉 = |ak↑〉 |↑〉+ |bk↑〉 |↓〉 , (29)

where |ak↑〉 = 〈↑ |φk↑〉 and |bk↑〉 = 〈↓ |φk↑〉. Using (15), we have, from (28),

〈↑ |φk↑〉 = 〈↑|U+
k

∣∣χ+
k

〉 〈
χ+
k | ↑

〉
+ 〈↑|U−k

∣∣χ−k 〉 〈χ−k | ↑〉 . (30)

Now, if U+
k ≈ U−k = Uk, implying Γ+

k ≈ Γ−k ≈ 1, this reduces to

|ak↑〉 = 〈↑ |φk↑〉 = 〈↑|Uk |↑〉 (31)

(since
∑

α |χαk〉 〈χαk| = 1) and similarly

|bk↑〉 = 〈↓ |φk↑〉 = 〈↓|Uk |↑〉 . (32)

As shown in Fig. 1, Γ±k ≈ 1 holds as a very good approximation over a large energy

range. Hence, we can rewrite (29) as

|φk↑〉 = |↑〉 〈↑|Uk |↑〉+ |↓〉 〈↓|Uk |↑〉 , (33)

which does not explicitly depend on the underlying spin eigenstates. In this case, we can

simply use the prescription implied by (2) and (3) to obtain the spin-flipping amplitude

for a fixed spin orientation |↑〉, without concern for the k-dependence of the spin states.

The coupling factor may then be simplified to be

〈φk′↓|φk↑〉 = 〈↓|U †k′Uk |↑〉 , (34)

where the † superscript indicates complex conjugation. Note that had we not had

Γ±k ≈ 1, using (28), this expression and the squared modulus of it would have contained
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Figure 2. The squared moduli of the coupling factors τm/τs ≈ |〈φk′↓|φk↑〉|2 for the

ZSC and Dresselhaus components in bulk material. Both give a ratio of the spin

relaxation rate to the momentum relaxation rate (here, the averaging over angular

direction is approximated as introducing a factor of unity). As can be seen, in bulk

the Dresselhuas contribution is negligible and the ZSC description remains valid.

4 and 8 terms respectively, so (34) represents a significant simplification. Using (17)

and neglecting terms in k3 and higher, we show in Appendix D that (34) becomes

〈φk′↓|φk↑〉 = − εk
ε∗G

k′

k

[
sinϑ′ cosϑeiϕ

′ − sinϑ cosϑ′eiϕ
]
,

(35)

where εk = ~2k2/(2m∗) and

1

ε∗G
=

(
1− m∗

m0

)
∆ (∆ + 2εG)

εG (εG + ∆) (3εG + 2∆)
, (36)

which is the result of the ZSC model. Here ϑ and ϕ are the spherical polar coordinates

of k-vector. Note that if k′ = k, the coupling factor is zero in this model.

We note that, from (D.6) we see that there is still a small residual coupling when

k′ = k proportional to the Dresselhaus coefficient, given by

〈φk↓|φk↑〉 = γD
(∆ + 2εG)

εG (εG + ∆)
(κx + iκy) . (37)

Although small, this expression is only precisely zero in the [001] and [111] directions,

when the conduction band spin-splitting is zero. However, as we shall see, even the
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maximum value of this contribution is negligible compared to the ZSC component of

(35) confirming that the ZSC model remains and adequate description of the Elliot

process in bulk material. The only caveat is that we must regard the spin states |↑〉 and

|↓〉 as superpositions of the spin eigenstates of the system.

For the purposes of comparing the resultant spin relaxation times arising out of

(35) and (37) to the momentum relaxation time via (8), we note that

〈φk′↑|φk↑〉 = 〈ak′↑|ak↑〉+ 〈bk′↑|bk↑〉 ≈ 〈ak′↑|ak↑〉 , (38)

for small k. In the same approximation, 〈ak′↑|ak↑〉 ≈ a2, which from (20) using

D2 ≈ ε2G (εG + ∆)2 is approximately equal to unity. Hence, we may consider (35) and

(37) to be normalised and use

τm
τs
≈
〈〈
|〈φk′↓|φk↑〉|2

〉〉
. (39)

The ZSC and Dresselhaus components are plotted for GaAs in Fig. 2. Here, we

have not explicitly carried out the averaging over angular direction, since this will only

introduce a factor on the order of unity and we only interested in order of magnitude

estimates. In both cases we assume elastic scattering processes, so in (35) we put k′ = k

and plot the maximum value of |〈φk′↓|φk↑〉|2 = (εk/ε
∗
G)2 as a function of energy. For

the Dresselhaus component of (37) we put the k-dependent factor to k3 for the sake of

comparison, so that |〈φk′↓|φk↑〉|2 varies as k6.

We note that both components are small even at high energy, implying that the

spin-relaxation rate is much smaller than the momentum relaxation rate. At εk =

0.04 eV (the thermal energy 3kBT/2 at 300 K) a momentum relaxation time of 1 ps

would give a spin relaxation time of around 90 ns in the ZSC model. At this energy, the

Dresselhaus component is much smaller, being about 1% of the ZSC component, rising

to about 4% at εk = 0.1 eV, so we may consider this to be negligible.

3.4. Quantum wells

Moving to 2D, we consider a quantum well grown in the [001] direction. In general,

an asymmetric quantum well introduces an electric field due to the spatial variation of

the band edge and gives rise to an additional spin-orbit interaction due to structural

inversion asymmetry. This is described by the Bychkov-Rashba Hamiltonian [15], which

introduces an energy splitting linear in k. For present purposes, however, we shall confine

our attention to symmetric quantum wells so that we may neglect the Bychkov-Rashba

spin-orbit interaction.

We assume that the conduction band eigenstates are of the form

|ψn,k±〉 = eik·rφn(z)
∣∣u±k 〉 , (40)

where k is now the in-plane wavevector and φn(z) is an envelope function for the nth sub-

band of the well. We should pause to note here that the choice of Cartesian coordinates
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Figure 3. The squared moduli of the Dresselhaus coupling factor τm/τs =

|〈φk′↓|φk↑〉|2 in infinite symmetric GaAs quantum wells. L is the well width.

is no longer arbitrary, since the form given earlier for κ assumes that x, y and z label

crystallographic axes.

In order to obtain tractable, analytical results, we have made certain simplifying

assumptions. Firstly, we assume that each bulk band is associated with the same

envelope function. Secondly, we make no attempt to properly match the boundary

conditions on the φn(z). This is only technically justified if we assume that we have

an infinite square well. Since we are confining ourselves to consideration of the lowest

subbands in the conduction band, we shall take this to be a reasonable approximation.

We may now modify (15) and (17) to read∣∣u±n,k〉 ≡ φn(z)
∣∣u±k 〉 = U±n,k+∂z

∣∣χ±k 〉 , (41)

where U±n,k+∂z is

U±n,k+∂z = U±k+∂zφn(z), (42)

in which every instance of kz is replaced by −i∂/∂z. Following the same assumptions as

above, we put Γ±k ≈ 1 and write a spin-up state |φn,k↑〉 as a superposition of eignenstates.

With these modifications, (35) for the ZSC component of the coupling factor now

becomes

〈φm,k′↓|φn,k↑〉 = − i
εk
ε∗G

[
k′

k2
eiϕ

′ 〈φm|∂zφn〉
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+ 〈∂zφm|φn〉
k

k2
eiϕ
]
, (43)

where ∂z ≡ ∂/∂z. Since taking the derivative of φn(z) changes its parity, the integrals

over the z direction disappear for m = n. Hence, there is no intra-subband spin

relaxation due to this component of coupling factor. We will still have inter subband spin

relaxation, with selection rules depending on the exact form of the envelope functions.

For an infinite square well, this will be when the difference in subband index is an

odd number. This means that even a second order process cannot flip the spin, since

an allowed spin flipping transition to another subband must be followed by a return

transition, flipping the spin back to its original state.

On the other hand, in 2D, the Dresselhaus component of the coupling factor now

becomes linear in k. Neglecting remaining terms proportional to k3, the coupling factor

is

〈φm,k′↓|φn,k↑〉 = γD
(∆ + 2εG)

εG (εG + ∆)
〈∂zφm|∂zφn〉

×
(
k′eiϕ

′
+ keiϕ

2

)
. (44)

For intra-subband spin relaxation m = n and in an infinite square well of width L,

〈∂zφn|∂zφn〉 = k2n = (nπ/L)2. Hence we may expect the Dresselhaus contribution to

become more important the narrower the well. Again, we note that we still have a finite

component to the spin relaxation rate at k′ = k. We further note that this linear part

of the coupling has rotational symmetry in the plane of the well, unlike the bulk result,

which disappears when k lies along a crystallographic axis.

To quantify the size of this Dresselhaus coupling term, let us assume an infinite

quantum well and consider the case of k′ = k. We then have

|〈φn,k↓|φn,k↑〉|2 =

(
γD

(∆ + 2εG)

εG (εG + ∆)

)2 (nπ
L

)4
k2,

(45)

for which there is no angular dependence at all. This is plotted in Fig. 3 for a selection

of quantum well widths from 2 to 5 nm. We see that, around the thermal energy, the

size of Dresselhaus coupling in 2D is comparable to the bulk value of the ZSC coupling

for a well width of 4 nm and exceeds it for narrower wells. In 2D, room temperature

electron mobilities may be of the order 0.1 to 1 ×104 cm2/Vs [16] for well widths around

1 to 5 nm, corresponding to momentum times in the range 0.04 to 0.4 ps. So, in a 2 nm

well, for instance, a momentum relaxation time of 0.04 ps would give a spin relaxation

time of 180 ps at εk = 0.04 eV, comparable to observed values [9–11]. On the other

hand, a 6 nm well with τm = 0.4 ps would give τs = 150 ns, so the contribution is only

significant for the narrowest wells.
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The (nπ/L)4 (or k4n) dependence means that the squared modulus of the coupling

factor is proportional to ε2n, i.e. the square of the confinement energy of the well. In

the absence of any well width dependence on the scattering potential, from (5) we have

1/τs(ε) ∝ ε2n, as found for the spin relaxation time associated with the D’yakonov-Perel

mechanism [17]. Whilst this latter process is usually expected to dominate, our result

means that contributions from the Elliot process add with the same energy dependence.

Note that this result is in contrast to the result of Tackeuchi et al [10], who derive a

result of 1/τs(ε) ∝ εn using the ZSC model in 2D. Inspecting (43) we see that this would

indeed be the energy dependence if it were not for the disappearance of intra-valley spin

relaxation for this term as discussed above.

4. Discussion and conclusions

The coupling factors derived in Sections 3.3 and 3.4 have been used in conjunction

with (8) to compare spin relaxation times to momentum relaxation times. The purpose

of this has been to show that the modification of the Elliot process to incorporate the

Dresselhaus spin-orbit interaction is important for quantum wells and lower dimensional

structures. However, the derivation of (8) is for elastic processes only and involved

assuming an isotropic scattering potential. Whilst these assumptions are reasonable for

deformation potential acoustic phonon scattering, (8) does not suffice for a quantitative

calculation of the spin relaxation in the general case.

For a proper treatment of the spin dynamics, we would need to use our results for

the coupling factors in conjunction with a generalization of (4) (to allow for inelastic

scattering) in a full dynamical model. This is not a trivial task, especially for the

proper treatment of polar-optical phonon (POP) scattering. Our results constitute

‘intrinsic’ scattering rates, which should be incorporated into a more general spin-density

formalism. Such a semi-classical treatment of spin relaxation using a ‘ladder method’

for dealing with POP scattering in cubic III-V semiconductors has been carried out by

Dyson and Ridley in bulk [18] and low-dimensional semiconductors [19]. However, these

authors did not adapt the ZSC model for the Elliot process in the latter case. Other

dynamical models requiring the expressions derived here as input might include the

kinetic spin Bloch equation approach developed by Wu et al (see Ref [20] and further

references therein) or Monte Carlo simulations (e.g. Refs [21,22]).

Comparisons to experiment require the calculation of all spin relaxation mechanisms

as described above. However, we noted earlier that, with no significant well-width

dependence on the scattering potential, the spin relaxation time found here for the

Elliot process should have the same dependence on quantum well confinement energy

as that for the D’yakonov-Perel mechanism. This 1/τs(ε) ∝ ε2n dependence is consistent

with experimentally observations [9, 11] of spin relaxation in quantum wells.

In conclusion, we have considered the Elliot process for spin relaxation with the

inclusion of the Dresselhaus spin-splitting of the conduction band. Consideration of this

splitting is essential for any discussion of spin dynamics in materials lacking an inversion
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symmetry, since it acts as an effective magnetic field in which the spin precesses. This

leads to a spin relaxation via the D’yakonov-Perel mechanism, belonging to the class of

motional narrowing spin relaxation mechanisms.

We have included this aspect of the spin orbit coupling consistently into the

description of the admixture spin-eigenstates of the conduction band, which allows for

the Elliot process of spin relaxation. We have shown that, to very good approximation,

this remains consistent with the existing ZSC model (due to Zawadzki and Szymańska [4]

and Chazalviel [5]) in bulk material, although now putting the physics of this process on

the same footing as the D’yakonov-Perel mechanism. In this model, the coupling factor

between opposite spin components in the initial and final electronic states disappears

when the final wavevector k′ equals the initial wavevector k.

In symmetric quantum wells, we have found that intra-subband spin relaxation

disappears in the ZSC model. The Dresselhaus coupling, on the other hand, remains,

becoming increasingly significant as the well becomes narrower. In GaAs wells, the

Dresselhaus coupling is comparable to the bulk ZSC coupling for a well width of around

4 nm. We conclude that for analysis of the spin dynamics of quantum wells (and lower

dimensional semiconductor structures), this modified version of the Elliot process should

be used.
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Appendix A. Theoretical background

Appendix A.1. The spin-orbit interaction

The spin-orbit interaction Hamiltonian arising through the coupling of the electron spin

S and orbital angular momentum L is given by

HSO =
~

4m2
0c

2
(∇V × p) · σ, (A.1)

where m0 is the free electron mass, V is the potential energy of the local electric field

seen by the electron, p is the momentum of the electron and σ is the Pauli pseudo-

vector taking the Pauli matrices σi as components. On combining the p-type valence

band states |X〉, |Y 〉 and |Z〉 with spinors |↑〉 and |↓〉, we find that the basis-states

that diagonalize (A.1) are eigenvectors of the total angular momentum J (see (B.9) in

Appendix B). At k = 0, the degeneracy of these states is split by the energy [12]

∆ =
3i~

4m2
0c

2

〈
X

∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣Y〉 . (A.2)

.
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Figure A1. Energy band diagram for a III-V semiconductor.

The higher four states are the heavy and light hole bands, having j = 3/2 and have

the symmetry of the double group representation Γv8. The lower band is the spin orbit

split-off band with j = 1/2 and has the symmetry of Γv7 double group representation(see

Fig A1).

On combining the s-type Γc1 conduction band state |S〉 with spin, we have spin-

states with j = 1/2 and Γc6 symmetry. These states have zero orbital angular momentum

(l = 0) and at k = 0 are pure spin states. However, at finite k, the conduction band

becomes coupled to the valence band states via the k ·p interaction, composed of matrix

elements such as

~
m0

〈S |k · p|Z〉 = ikzP. (A.3)

This equation conveniently defines the Kane parameter P . The actual interaction matrix

elements will be between the conduction band states and eigenstates of J (see Appendix

B for details). This then leads to the conduction band state becoming a k-dependent

admixture of spin states.

Appendix A.2. Conduction band spin-splitting

The Dresselhaus splitting of the conduction band emerges through the interaction with

the higher Γc7 and Γc8 conduction bands (see Fig. A1). We may incorporate the interaction

with higher lying states into an 8-band model via Löwdin renormalization [23].

Accordingly, the matrix elements of the 8-band model are extended to second order
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via the prescription

Hij → Hij +
∑
l

HilHlj

ε−Hll

, (A.4)

where the sum is over remote bands. The Γc7 and Γc8 states, which we shall denote by

|Xc
l 〉, transform in the same way as a state of the form |Xc

l 〉 ∼ a |X〉+ b |Y 〉+ c |Z〉, so

that the matrix element of the k · p perturbation becomes

~
m0

〈iS |k · p|Z〉 = − i
~
m0

kz 〈S |pz|Z〉

− i
~
m0

kxky

×
∑
l

〈S |px|Xc
l 〉 〈Xc

l |py|Z〉
ε−Hll

, (A.5)

with cyclic permutations of the indices x, y, z. Note that combination of px with the x

component of |Xc
l 〉 has even parity, as does the combination of the y and z components

of |Xc
l 〉 with py and |Z〉. Hence these matrix element combinations do not disappear.

We now follow the general notation of Refs [24,25] by denoting the second term via

~2

mcv

≡ ~
m0

∑
l

〈S |px|Xc
l 〉 〈Xc

l |py|Z〉
ε−Hll

. (A.6)

Note, however, that we have introduced the factor of ~2 so that mcv may have dimensions

of mass. Using Kane’s P parameter, we may then write (A.5) as

~
m0

〈iS |k · p|Z〉 = Pkz −
i~2

mcv

kxky ≡ Kz (A.7)

with its cyclic permutations.

Diagonalizing the renormalized matrix (see Appendix B), we obtain the conduction

band energy

εC(k) = εC +
~2k2

2m∗
± γD

(
κ2x + κ2y + κ2z

)1/2
(A.8)

where εC is the conduction band-edge energy, m∗ is the effective mass (given by (B.26)),

γD is the Dresselhaus coefficient

γD =
2

3

~2P
mcv

(
η

εG

)
, (A.9)

εG is the energy gap, κz = kz
(
k2x − k2y

)
with cyclic permutations and we have defined

η ≡ ∆

εG + ∆
. (A.10)

Substituting for P from (B.26) in Appendix B, (A.9) may be re-written in as

γD =
2~3

3

η

mcv

(
1

m∗
− 1

m0

)1/2 [
2εG

(
1− η

3

)]−1/2
. (A.11)

Note that this expression is usually further approximated by putting (1/m∗ − 1/m0)→
1/m∗ as, for instance, in Ref. [24]. In our calculations we shall use the expression above.
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Appendix B. The cubic Dresselhaus spin splitting

Following Dresselhaus [2] or Kane [12], we may construct an 8-band k · p model for the

Hamiltonian

H = H0 +HSO, (B.1)

where

H0 =
p2

2m0

+ V (r) (B.2)

and HSO is given by (A.1) for the spin-orbit coupling term. Writing the Schrödinger

equation in terms of Bloch functions, we may cancel out the eik·r factor in the usual

fashion to obtain

[
p2

2m0

+ V (r) +
~

4m2
0c

2
(∇V × p) · σ +

+
~
m0

k · p +
~2

4m2
0c

2
(∇V × k) · σ

]
un,k =(

εn,k −
~2k2

2m

)
un,k.

The fifth term in the square brackets is a k-dependent component of the spin-orbit

coupling and is found to be very weak and so generally neglected, as we shall do here.

We employ orbital angular momentum basis states |S〉 for the s-type (l = 0)

conduction band together with

|R+〉 =
1√
2

(|X〉+ i |Y 〉) (l = 1, ml = 1), (B.3)

|R−〉 =
1√
2

(|X〉 − i |Y 〉) (l = 1, ml = −1) (B.4)

and |Z〉 (l = 1, ml = 0) for the p-type valence bands. We may then combine these

states with spinors via tensor products |S ↑〉 ≡ |S〉 ⊗ |↑〉 etc. The parameters of the

model are then defined by

P = −i ~
m
〈S |pi|Xi〉 (B.5)

and

∆ =
3i~

4m2
0c

2

〈
Xi

∣∣∣∣∂V∂xipj − ∂V

∂xj
pi

∣∣∣∣Xj

〉
. (B.6)

.

The following results may then be found fairly easily:
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〈R± |HSO|R±〉 = ± ∆

3
σz, (B.7)

〈R± |HSO|R∓〉 = 0,

〈R± |HSO|Z〉 = ∓
√

2∆

3
σ∓ and

〈Z |HSO|R±〉 = ∓
√

2∆

3
σ±,

where

σ± =
1

2
(σx ± iσy) . (B.8)

An 8× 8 matrix is then constructed using basis functions

|u1〉 =
∣∣S 1

2
, 1
2

〉
= |iS ↑〉 ,

|u2〉 =
∣∣S 1

2
,−1

2

〉
= |iS ↓〉 ,

|u3〉 =
∣∣3
2
, 3
2

〉
= |R+ ↑〉 ,

|u4〉 =
∣∣3
2
, 1
2

〉
= −

√
1
3
|R+ ↓〉+

√
2
3
|Z ↑〉 ,

|u5〉 =
∣∣3
2
,−1

2

〉
=

√
1
3
|R− ↑〉+

√
2
3
|Z ↓〉 ,

|u6〉 =
∣∣3
2
,−3

2

〉
= |R− ↓〉 ,

|u7〉 =
∣∣1
2
, 1
2

〉
=

√
2
3
|R+ ↓〉+

√
1
3
|Z ↑〉 ,

|u8〉 =
∣∣1
2
,−1

2

〉
=

√
2
3
|R− ↑〉 −

√
1
3
|Z ↓〉 ,

(B.9)

for which the valence band states can be shown to be eigenvectors of the spin-orbit energy

HSO and hence (in the absence of additional strain terms) diagonalize the matrix for

k = 0.

To find the energy eigenvalues ε for non-zero k, we can use the general result∣∣∣∣∣ A B

B† C

∣∣∣∣∣ = |C|
∣∣A−BC−1B†∣∣ = 0, (B.10)

where, in our case, we have

A =

[
∆εC 0

0 ∆εC

]
, (B.11)

∆εC = εC +
~2k2

2m0

− ε, (B.12)
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εC is the conduction band edge energy and m0 is the free electron mass. The matrix B

may be written in the general form

B =

[
V13 V14 V15 V16 V17 V18
V23 V24 V25 V26 V27 V28

]
, (B.13)

where V1i = 〈iS ↑ |H|ui〉 and V2i = 〈iS ↓ |H|ui〉. In the absence of additional terms

due to strain or the interaction with other remote bands, the matrix C is

C =



∆ε3 0 0 0 0 0

0 ∆ε4 0 0 0 0

0 0 ∆ε5 0 0 0

0 0 0 ∆ε6 0 0

0 0 0 0 ∆ε7 0

0 0 0 0 0 ∆ε8


(B.14)

where the ∆εi for the valence band edges are defined analogously to (B.12). The

determinant of this is simply

|C| =
∏
i=3

∆εi = ∆ε4V ε
2
SO. (B.15)

For the conduction band |C| 6= 0 (this will remain true even in the general case

where C has non-zero off-diagonal elements), so we may divide (B.10) by |C| to give the

characteristic equation for a two band model∣∣A−BC−1B†∣∣ = 0. (B.16)

From (B.13), we have

BC−1B† =
∑
i=3

1

∆εi

[
|V1i|2 V1iV

∗
2i

V ∗1iV2i |V2i|
2

]
(B.17)

and hence (B.16) becomes

∣∣∣∣∣ ∆εC −
∑
|V1i|2 /∆εi −

∑
V1iV

∗
2i/∆εi

−
∑
V ∗1iV2i/∆εi ∆εC −

∑
|V2i|2 /∆εi

∣∣∣∣∣ = 0.

(B.18)

We then have the solution

∆εC =
1

2

∑
i

|V1i|2 + |V2i|2

∆εi

± 1

2

(∑
i

|V1i|2 − |V2i|2

∆εi

)2

+ 4

∣∣∣∣∣∑
i

V1iV
∗
2i

∆εi

∣∣∣∣∣
2
1/2

≡ ∆εC0 ± εD(k). (B.19)
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Note that both the right and left hand sides of (B.19) involve ε, so we cannot obtain

an explicit expression for the energy from this. However, for small values of k, we may

make the approximation ε ∼ εC to simplify the right-hand-side as we need to.

We may incorporate the interaction with other bands via Löwdin perturbation

theory as described earlier in Appendix A.2. Using the result of (A.7), we may then

construct an explicit expression for the B matrix

B =

[
K+

√
2/3Kz

√
1/3K−

0 −
√

1/3K+

√
2/3Kz

. . .

. . .
0

√
1/3Kz

√
2/3K−

K−
√

2/3K+ −
√

1/3Kz

]
(B.20)

where

K± =
1√
2

(Kx ± iKy) . (B.21)

It will also be useful to define the analogous expression for k vector

k± =
1√
2

(kx ± iky) . (B.22)

We then obtain the intermediate results

|K±|2 =

(
P 2 +

~4k2z
m2
cv

)
|k±|2 ±

~2P
mcv

kz
(
k2x − k2y

)
. (B.23)

and

|Kz|2 = P 2k2z +
~4k2xk2y
m2
cv

. (B.24)

To begin with, let us calculate the first term in (B.19)

1

2

∑
i

|V1i|2 + |V2i|2

∆εi

=
1

3

(
|K+|2 + |K−|2 + |Kz|2

)( 2

∆εV
+

1

∆εSO

)
,

=
1

3

(
P 2k2 +

~4

m2
cv

[
k2xk

2
y + k2xk

2
y + k2xk

2
y

])
×
(

2

∆εV
+

1

∆εSO

)
.

Now ∆εSO = ∆εV − ∆, so putting ∆εV ≈ εV − εC = −εG, the energy gap, we may

rearrange (B.19) using (B.12) and neglecting the k4 terms to give

εC(k) = εC +
~2k2

2m∗
± εD(k), (B.25)
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where the effective mass m∗ is defined via

1

m∗
=

1

m0

+
2P 2

3~2

(
2

εG
+

1

εG + ∆

)
. (B.26)

Approaching the evaluation of εD(k) in manageable steps, we have

∑
i

|V1i|2 − |V2i|2

∆εi
=

2

3

(
|K+|2 − |K−|2

)
×
(

1

∆εV
− 1

∆εSO

)
.

Using (B.23) and (A.10) with ∆εSO = ∆εV −∆ and ∆εV ≈ εV − εC = −εG again,

(∑
i

|V1i|2 − |V2i|2

∆εi

)2

=
16

9

~4P 2

m2
cv

k2z
(
k2x − k2y

)2( η

εG

)2

.

Meanwhile,

∑
i

V1iV
∗
2i

∆εi
= −

√
2

3

(
KzK

∗
+ −K−K∗z

)
×
(

1

∆εV
− 1

∆εSO

)
, (B.27)

where

KzK
∗
+ −K−K∗z = −

√
2~2P
mcv

[
kx
(
k2y − k2z

)
− iky

(
k2z − k2x

)]
, (B.28)

which gives, on treating ∆εV and ∆εSO as before,

4

∣∣∣∣∣∑
i

V1iV
∗
2i

∆εi

∣∣∣∣∣
2

=
16

9

~4P 2

m2
cv

[
k2x
(
k2y − k2z

)2
+ k2y

(
k2z − k2x

)2]( η

εG

)2

.

Putting these results together, we have, from (B.19),

εD(k) = ± 2

3

~2P
mcv

(
η

εG

)
×
[
k2x
(
k2y − k2z

)2
+ k2y

(
k2z − k2x

)2
+ k2z

(
k2x − k2y

)2]1/2
, (B.29)
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which, using the expression for γD in (A.9), gives us the energy splittings given earlier

as the eigenvalues of the matrix HD in (13). Combining with (B.25) for the dispersion

relations then gives us (A.8) for the conduction band energy as required.

Appendix C. Admixture spin state eigenvectors

The eigenvectors of the system may be found in terms of the coefficients of the basis

states of (B.9) from the matrix equation of the system. On writing out the matrix in

full, we find the relations

∆εCa1 +
∑
i=3

V1iai = 0, (C.1)

∆εCa2 +
∑
i=3

V2iai = 0, (C.2)

and

ai = −V
∗
1ia1 + V ∗2ia2

∆εi
. (C.3)

These coefficients may then be fully specified (to within a phase factor) by imposing the

normalization condition

|a1|2 + |a2|2 +
∑
i=3

|ai|2 = 1. (C.4)

From (C.1) and (C.3)

∆εCa1 =
∑
i=3

|V1i|2

∆εi
a1 +

∑
i=3

V1iV
∗
2i

∆εi
a2, (C.5)

so (
∆εC −

∑
i=3

|V1i|2

∆εi

)
a1 =

∑
i=3

V1iV
∗
2i

∆εi
a2. (C.6)

Neglecting quartic terms, we find∑
i

|V1i|2

∆εi
= −

[
~2k2

2m∗

(
1− m∗

m0

)
+ γDκz

]
(C.7)

and ∑
i

V1iV
∗
2i

∆εi
= −γD (κx − iκy) . (C.8)

Equation(C.6) is then

(
εC +

~2k2

2m∗
+ γDκz − ε

)
a1

= −γD (κx − iκy) a2.
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From (A.8), we had ε = εC + ~2k2/(2m∗)± γD |κ|, so we have

(κz ∓ |κ|) a±1 = − (κx − iκy) a±2 , (C.9)

which, representing κ in terms of spherical polar coordinates, may be written

(±1− cos θ) a±1 = sin θe−iφa±2 , (C.10)

Writing this as

G±1 a
±
1 = G2a

±
2 (C.11)

and using the normalization condition (C.4), we find

∣∣a±1 ∣∣2 =
|G2|2∣∣G±1 ∣∣2 + |G2|2

(
1−

∑
i=3

|ai|2
)

=
∣∣χ±1 ∣∣2

(
1−

∑
i=3

|ai|2
)
, (C.12)

and

∣∣a±2 ∣∣2 =

∣∣G±1 ∣∣2∣∣G±1 ∣∣2 + |G2|2

(
1−

∑
i=3

|ai|2
)

=
∣∣χ±2 ∣∣2

(
1−

∑
i=3

|ai|2
)
, (C.13)

where χ±1 and χ±2 are the spin coefficients of the two-band model of (14). That is,

∣∣χ±k 〉 =

[
χ±1
χ±2

]
, (C.14)

From (C.3) and (C.11), we find that

∑
i=3

|ai|2 =
∑
i=3

∣∣V ∗1iG2 + V ∗2iG
±
1

∣∣2
|G2|2 ∆ε2i

∣∣a±1 ∣∣2
=
∑
i=3

∣∣V ∗1iG2 + V ∗2iG
±
1

∣∣2∣∣G±1 ∣∣2 ∆ε2i

∣∣a±2 ∣∣2 ,
allowing us to re-write (C.12) and (C.13) as

∣∣a±1 ∣∣2 =
∣∣χ±1 ∣∣2

[
1 +

Σ∣∣G±1 ∣∣2 + |G2|2

]−1
(C.15)
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and

∣∣a±2 ∣∣2 =
∣∣χ±2 ∣∣2

[
1 +

Σ∣∣G±1 ∣∣2 + |G2|2

]−1
, (C.16)

where

Σ =
∑
i=3

∣∣V ∗1iG2 + V ∗2iG
±
1

∣∣2
∆ε2i

. (C.17)

After some algebra, we find that[
1 +

Σ∣∣G±1 ∣∣2 + |G2|2

]−1
= a20

∣∣Γ±k ∣∣2 , (C.18)

where

a20 =
ε2G (εG + ∆)2

D2
, (C.19)

D is as given in (23),∣∣Γ±k ∣∣2 =
D2

D2 + U±k
(C.20)

and

U±k = εG (εG + ∆) (2εG + ∆) γD
〈
χ± |σ · κ|χ±

〉
. (C.21)

Noting that γD 〈χ± |σ · κ|χ±〉 is the energy splitting εD of the conduction band due to

spin, we may rewrite this as U±k = ±Vk as given earlier in (25).

The coefficients of the other basis states may then be found from (C.3) using the

results above for a±1 and a±2 . Having obtained these, it turns out that a convenient

formulation of the eigenstates
∣∣u±k 〉 emerges if we consider the coefficients of |X〉, |Y 〉

and |Z〉.
Defining a, b and c as earlier by (20), (21) and (22) respectively, we find

〈
X|u±k

〉
=

[
cK∗x − i

b√
2
K∗yσz + i

b√
2
K∗zσy

]
Γ±
∣∣χ±〉 ,

〈
Y |u±k

〉
=

[
cK∗y + i

b√
2
K∗xσz − i

b√
2
K∗zσx

]
Γ±
∣∣χ±〉

and

〈
Z|u±k

〉
=

[
cK∗z − i

b√
2
K∗xσy + i

b√
2
K∗yσx

]
Γ±
∣∣χ±〉 .

Combing these results, we obtain
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∣∣u±k 〉 = Γ±k

[
a |iS〉+ cK∗ · |R〉+

ib√
2

(K∗ × |R〉) · σ
]

×
∣∣χ±k 〉 ,

where the vectors |R〉 and K are defined as earlier in (18) and (19). This may then be

written in terms of an operator acting on the spin states as given in (15) and (17).

Appendix D. Coupling factor

In Section 3.3 it is shown that the coupling factor may be written as

〈φk′↓|φk↑〉 = 〈↓|U †k′Uk |↑〉 , (D.1)

where the † superscript indicates complex conjugation. Using (17) we then find

〈φk′↓|φk↑〉 = b

(
b

2
−
√

2c

)√
2
(
K ′+K

∗
z −K ′zK∗−

)
. (D.2)

Using (21) and (22), we have

b

(
b

2
−
√

2c

)
= −∆ (∆ + 2εG)

3D2
. (D.3)

For small k, we may approximateD2 ≈ ε2G (εG + ∆)2. Then, using (B.26) for the effective

mass, we find

b

(
b

2
−
√

2c

)
≈ − εk

ε∗G

1

P 2k2
. (D.4)

where εk = ~2k2/(2m∗) and

1

ε∗G
=

(
1− m∗

m0

)
∆ (∆ + 2εG)

εG (εG + ∆) (3εG + 2∆)
. (D.5)

Neglecting terms proportional to k4, the k dependent factor of (D.2) is given by

√
2
(
K ′+K

∗
z −K ′zK∗−

)
= P 2

(
k′x + ik′y

)
kz

− P 2k′z (kx + iky)

− P~2

mcv

[
(k′x + kx)

(
k′yky − k′zkz

)
+ i

(
k′y + ky

)
(k′zkz − k′xkx)

]
.

(D.6)

Usually, we also neglect terms in k3, so that (D.2) becomes

〈φk′↓|φk↑〉 = − εk
ε∗G

k′

k

[
sinϑ′ cosϑeiϕ

′ − sinϑ cosϑ′eiϕ
]
,
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which is the ZSC model as given earlier.

For k′ = k, the ZSC term disappears and, using (D.3) and (D.6) with the small k

approximation, (D.2) becomes

〈φk↓|φk↑〉 =
∆ (∆ + 2εG)

3ε2G (εG + ∆)2
2P~2

mcv

(κx + iκy) . (D.7)

Using (A.9), this may be re-written as

〈φk↓|φk↑〉 = γD
(∆ + 2εG)

εG (εG + ∆)
(κx + iκy) . (D.8)
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