9,917 research outputs found

    Testing the Pauli Exclusion Principle for Electrons

    Full text link
    One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 10−29^{-29} - 10−30^{-30}, thus improving the previous limit by 3-4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented.Comment: Proceedings DISCRETE 2012-Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, December 3-7, 201

    The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars

    Get PDF
    Investigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers. The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50-70 ms(-1) with a deceleration of < 500 g for < 20 ms. The total mass of the prototype design is approximate to 24 kg, with approximate to 4 kg of mass available for the payload. The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass. The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions

    Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment

    Get PDF
    The VIP (Violation of Pauli exclusion principle) experiment and its follow-up experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for X-rays from Cu atomic states that are prohibited by the Pauli Exclusion Principle (PEP). The candidate events, if they exist, will originate from the transition of a 2p2p orbit electron to the ground state which is already occupied by two electrons. The present limit on the probability for PEP violation for electron is 4.7 ×10−29\times10^{-29} set by the VIP experiment. With upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment will improve the sensitivity by two orders of magnitude.Comment: 5 pages, 3 figures, 1 table. Conference proceedings for oral presentation at TAUP 2015, Torin

    Testing the Pauli Exclusion Principle for electrons at LNGS

    Get PDF
    High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous KK-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at the level of 10−2910^{-29} for the probability that an external electron captured by a Cu atom can make the transition from the 2pp state to a 1ss state already occupied by two electrons. In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we did at Laboratori Nazionali di Frascati (LNF).Comment: 8 pages, 5 figures, conference proceedings on TAUP 201

    Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    Get PDF
    The AMADEUS experiment aims to provide unique quality data of K−K^- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405)\Lambda(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K−K^- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DAΩ\PhiNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K−K^- nuclear capture on H, 4{}^4He, 9{}^{9}Be and 12{}^{12}C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest K−K^- nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure

    Strong interaction studies with kaonic atoms

    Get PDF
    The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.Comment: Proc. Few Body 21, 4 pages, 2 figure

    Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Full text link
    In the exotic atoms where one atomic 1s1s electron is replaced by a K−K^{-}, the strong interaction between the K−K^{-} and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s1s state of K−pK^{-}p and the 2p2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015 conference, Kolymbari, Cret

    KK-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

    Full text link
    We measured the KK-series X-rays of the K−pK^{-}p exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the ρSTP\rho_{\rm STP} of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be 0.012−0.003+0.004^{+0.004}_{-0.003} for KαK_{\alpha} and 0.043−0.011+0.012^{+0.012}_{-0.011} for all the KK-series transitions KtotK_{tot}. These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.Comment: 9 pages, 5 figures. Submitted to Nuclear Physics A, Special Issue on Strangeness and Char

    Preliminary study of kaonic deuterium X-rays by the SIDDHARTA experiment at DAFNE

    Full text link
    The study of the KbarN system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. At the DAFNE electron-positron collider of Laboratori Nazionali di Frascati we studied kaonic atoms with Z=1 and Z=2, taking advantage of the low-energy charged kaons from Phi-mesons decaying nearly at rest. The SIDDHARTA experiment used X-ray spectroscopy of the kaonic atoms to determine the transition yields and the strong interaction induced shift and width of the lowest experimentally accessible level (1s for H and D and 2p for He). Shift and width are connected to the real and imaginary part of the scattering length. To disentangle the isospin dependent scattering lengths of the antikaon-nucleon interaction, measurements of Kp and of Kd are needed. We report here on an exploratory deuterium measurement, from which a limit for the yield of the K-series transitions was derived: Y(K_tot)<0.0143 and Y(K_alpha)<0.0039 (CL 90%). Also, the upcoming SIDDHARTA-2 kaonic deuterium experiment is introduced.Comment: Accepted by Nuclear Physics
    • 

    corecore