32,593 research outputs found

    Tensor network trial states for chiral topological phases in two dimensions and a no-go theorem in any dimension

    Full text link
    Trial wavefunctions that can be represented by summing over locally-coupled degrees of freedom are called tensor network states (TNSs); they have seemed difficult to construct for two-dimensional topological phases that possess protected gapless edge excitations. We show it can be done for chiral states of free fermions, using a Gaussian Grassmann integral, yielding px±ipyp_x \pm i p_y and Chern insulator states, in the sense that the fermionic excitations live in a topologically non-trivial bundle of the required type. We prove that any strictly short-range quadratic parent Hamiltonian for these states is gapless; the proof holds for a class of systems in any dimension of space. The proof also shows, quite generally, that sets of compactly-supported Wannier-type functions do not exist for band structures in this class. We construct further examples of TNSs that are analogs of fractional (including non-Abelian) quantum Hall phases; it is not known whether parent Hamiltonians for these are also gapless.Comment: 5 pages plus 4 pages supplementary material, inc 3 figures. v2: improved no-go theorem, additional references. v3: changed to regular article format; 16 pages, 3 figures, no supplemental material; main change is much extended proof of no-go theorem. v4: minor changes; as-published versio

    The traveling salesman problem, conformal invariance, and dense polymers

    Full text link
    We propose that the statistics of the optimal tour in the planar random Euclidean traveling salesman problem is conformally invariant on large scales. This is exhibited in power-law behavior of the probabilities for the tour to zigzag repeatedly between two regions, and in subleading corrections to the length of the tour. The universality class should be the same as for dense polymers and minimal spanning trees. The conjectures for the length of the tour on a cylinder are tested numerically.Comment: 4 pages. v2: small revisions, improved argument about dimensions d>2. v3: Final version, with a correction to the form of the tour length in a domain, and a new referenc

    The X-ray Evolution of Merging Galaxies

    Full text link
    From a Chandra survey of nine interacting galaxy systems the evolution of X-ray emission during the merger process has been investigated. From comparing Lx/Lk and Lfir/Lb it is found that the X-ray luminosity peaks around 300 Myr before nuclear coalescence, even though we know that rapid and increasing star formation is still taking place at this time. It is likely that this drop in X-ray luminosity is a consequence of outflows breaking out of the galactic discs of these systems. At a time around 1 Gyr after coalescence, the merger-remnants in our sample are X-ray dim when compared to typical X-ray luminosities of mature elliptical galaxies. However, we do see evidence that these systems will start to resemble typical elliptical galaxies at a greater dynamical age, given the properties of the 3 Gyr system within our sample, indicating that halo regeneration will take place within low Lx merger-remnants.Comment: 4 pages, 1 figure, to appear in the Proceedings of the IAU Symposium No. 23

    Signatures of the Milky Way's Dark Disk in Current and Future Experiments

    Full text link
    In hierarchical structure formation models of disk galaxies, a dark matter disk forms as massive satellites are preferentially dragged into the disk-plane where they dissolve. Here, we quantify the importance of this dark disk for direct and indirect dark matter detection. The low velocity of the dark disk with respect to the Earth enhances detection rates in direct detection experiments at low recoil energy. For WIMP masses M_{WIMP} >~ 50 GeV, the detection rate increases by up to a factor of 3 in the 5 - 20 keV recoil energy range. Comparing this with rates at higher energy is sensitive to M_{WIMP}, providing stronger mass constraints particularly for M_{WIMP}>~100 GeV. The annual modulation signal is significantly boosted by the dark disk and the modulation phase is shifted by ~3 weeks relative to the dark halo. The variation of the observed phase with recoil energy determines M_{WIMP}, once the dark disk properties are fixed by future astronomical surveys. The low velocity of the particles in the dark disk with respect to the solar system significantly enhances the capture rate of WIMPs in the Sun, leading to an increased flux of neutrinos from the Sun which could be detected in current and future neutrino telescopes. The dark disk contribution to the muon flux from neutrino back conversion at the Earth is increased by a factor of ~5 compared to the SHM, for rho_d/rho_h=0.5.Comment: 5 pages, 7 figures, To appear in the proceedings of Identification of Dark Matter 2008 (IDM2008), Stockholm, 18-22 August 2008; corrected one referenc

    The case for a cold dark matter cusp in Draco

    Get PDF
    We use a new mass modelling method, GravSphere, to measure the central dark matter density profile of the Draco dwarf spheroidal galaxy. Draco's star formation shut down long ago, making it a prime candidate for hosting a 'pristine' dark matter cusp, unaffected by stellar feedback during galaxy formation. We first test GravSphere on a suite of tidally stripped mock 'Draco'-like dwarfs. We show that we are able to correctly infer the dark matter density profile of both cusped and cored mocks within our 95% confidence intervals. While we obtain only a weak inference on the logarithmic slope of these density profiles, we are able to obtain a robust inference of the amplitude of the inner dark matter density at 150pc, ρDM(150pc)\rho_{\rm DM}(150\,{\rm pc}). We show that, combined with constraints on the density profile at larger radii, this is sufficient to distinguish a Λ\Lambda Cold Dark Matter (Λ\LambdaCDM) cusp - that has ρDM(150pc)>1.8×108Mkpc3\rho_{\rm DM}(150\,{\rm pc}) > 1.8 \times 10^8\,{\rm M}_\odot \,{\rm kpc}^{-3} - from alternative dark matter models that have lower inner densities. We then apply GravSphere to the real Draco data. We find that Draco has an inner dark matter density of ρDM(150pc)=2.40.6+0.5×108Mkpc3\rho_{\rm DM}(150\,{\rm pc}) = 2.4_{-0.6}^{+0.5} \times 10^8\,{\rm M}_\odot \,{\rm kpc}^{-3}, consistent with a Λ\LambdaCDM cusp. Using a velocity independent SIDM model, calibrated on Λ\LambdaSIDM cosmological simulations, we show that Draco's high central density gives an upper bound on the SIDM cross section of σ/m<0.57cm2g1\sigma/m < 0.57\,{\rm cm}^2\,{\rm g}^{-1} at 99% confidence. We conclude that the inner density of nearby dwarf galaxies like Draco provides a new and competitive probe of dark matter models.Comment: 19 pages, 11 Figures. Final version accepted for publication in MNRA
    corecore