631 research outputs found

    Ultra-low-energy non-volatile straintronic computing using single multiferroic composites

    Get PDF
    The primary impediment to continued downscaling of traditional charge-based electronic devices in accordance with Moore\u27s law is the excessive energy dissipation that takes place in the device during switching of bits. One very promising solution is to utilize multiferroicheterostructures, comprised of a single-domain magnetostrictive nanomagnet strain-coupled to a piezoelectric layer, in which the magnetization can be switched between its two stable states while dissipating minuscule amount of energy. However, no efficient and viable means of computing is proposed so far. Here we show that such single multiferroic composites can act as universal logic gates for computing purposes, which we demonstrate by solving the stochastic Landau-Lifshitz-Gilbert equation of magnetization dynamics in the presence of room-temperature thermal fluctuations. The proposed concept can overwhelmingly simplify the design of large-scale circuits and portend a highly dense yet an ultra-low-energy computing paradigm for our future information processing systems

    Evaluating the potential impact of proton carriers on syntrophic propionate oxidation

    Get PDF
    Anaerobic propionic acid degradation relies on interspecies electron transfer (IET) between propionate oxidisers and electron acceptor microorganisms, via either molecular hydrogen, formate or direct transfers. We evaluated the possibility of stimulating direct IET, hence enhancing propionate oxidation, by increasing availability of proton carriers to decrease solution resistance and reduce pH gradients. Phosphate was used as a proton carrying anion, and chloride as control ion together with potassium as counter ion. Propionic acid consumption in anaerobic granules was assessed in a square factorial design with ratios (1:0, 2:1, 1:1, 1:2 and 0:1) of total phosphate (TP) to Cl-, at 1X, 10X, and 30X native conductivity (1.5 mS.cm(-1)). Maximum specific uptake rate, half saturation, and time delay were estimated using model-based analysis. Community profiles were analysed by fluorescent in situ hybridisation and 16S rRNA gene pyrosequencing. The strongest performance was at balanced (1:1) ratios at 10X conductivity where presumptive propionate oxidisers namely Syntrophobacter and Candidatus Cloacamonas were more abundant. There was a shift from Methanobacteriales at high phosphate, to Methanosaeta at low TP:Cl ratios and low conductivity. A lack of response to TP, and low percentage of presumptive electroactive organisms suggested that DIET was not favoured under the current experimental conditions

    Editorial overview: Energy Biotechnology

    Full text link

    Immobilisation of electrochemically active bacteria on screen-printed electrodes for rapid in situ toxicity biosensing

    Get PDF
    Microbial biosensors can be an excellent alternative to classical methods for toxicity monitoring, which are time-consuming and not sensitive enough. However, bacteria typically connect to electrodes through biofllm formation, leading to problems due to lack of uniformity or long device production times. A suitable immobilisation technique can overcome these challenges. Still, they may respond more slowly than biofllm-based electrodes because bacteria gradually adapt to electron transfer during biofllm formation. In this study, we propose a controlled and reproducible way to fabricate bacteria-modified electrodes. The method consists of an immobilisation step using a cellulose matrix, followed by an electrode polarization in the presence of ferricyanide and glucose. Our process is short, reproducible and led us to obtain ready-to-use electrodes featuring a high-current response. An excellent shelf-life of the immobilised electrochemically active bacteria was demonstrated for up to one year. After an initial 50% activity loss in the first month, no further declines have been observed over the following 11 months. We implemented our bacteria-modified electrodes to fabricate a lateral flow platform for toxicity monitoring using formaldehyde (3%). Its addition led to a 59% current decrease approximately 20 min after the toxic input. The methods presented here offer the ability to develop a high sensitivity, easy to produce, and long shelf life bacteria-based toxicity detectors. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences

    Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation

    Get PDF
    Background: Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e- → 12 H2 + OH-) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e- + 2 H+ + O2). Results: In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. Conclusions: VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH- is used for pH control without added chemicals, and H2 is metabolized by species such as Megasphaera elsdenii to produce greater value, more reduced VFA. Electro-fermentation displays promise for generating added value chemical co-products from biorefinery sidestreams and wastes.</p

    Ultra-low power signal processing

    Get PDF
    This IEEE Signal Processing Magazine (SPM) forum discusses the latest advances and challenges in ultra-low power (ULP) signal processing (SP). The forum members bring their expert insights to issues such as design requirements and future applications of ULP SP systems. The invited forum members are Gene Frantz (Texas Instruments), Jorg Henkel (Karlsruhe Institute of Technology), Jan Rabaey (University of California at Berkeley), Todd Schneider (ON Semiconductor), and Marilyn Wolf (Georgia Institute of Technology). The moderator of the forum is Umit Batur (Texas Instruments). Our readers may agree or disagree with the ideas discussed next. In either case, we invite you to share your comments with us by e-mailing [email protected] or spm.columns. [email protected]. © 2006 IEEE

    How can we possibly resolve the planet's nitrogen dilemma?

    Get PDF
    Nitrogen is the most crucial element in the production of nutritious feeds and foods. The production of reactive nitrogen by means of fossil fuel has thus far been able to guarantee the protein supply for the world population. Yet, the production and massive use of fertilizer nitrogen constitute a major threat in terms of environmental health and sustainability. It is crucial to promote consumer acceptance and awareness towards proteins produced by highly effective microorganisms, and their potential to replace proteins obtained with poor nitrogen efficiencies from plants and animals. The fact that reactive fertilizer nitrogen, produced by the Haber Bosch process, consumes a significant amount of fossil fuel worldwide is of concern. Moreover, recently, the prices of fossil fuels have increased the cost of reactive nitrogen by a factor of 3 to 5 times, while international policies are fostering the transition towards a more sustainable agro-ecology by reducing mineral fertilizers inputs and increasing organic farming. The combination of these pressures and challenges opens opportunities to use the reactive nitrogen nutrient more carefully. Time has come to effectively recover used nitrogen from secondary resources and to upgrade it to a legal status of fertilizer. Organic nitrogen is a slow-release fertilizer, it has a factor of 2.5 or higher economic value per unit nitrogen as fertilizer and thus adequate technologies to produce it, for instance by implementing photobiological processes, are promising. Finally, it appears wise to start the integration in our overall feed and food supply chains of the exceptional potential of biological nitrogen fixation. Nitrogen produced by the nitrogenase enzyme, either in the soil or in novel biotechnology reactor systems, deserves to have a ‘renaissance’ in the context of planetary governance in general and the increasing number of people who desire to be fed in a sustainable way in particular
    • …
    corecore