3,214 research outputs found
Upper-division Student Understanding of Coulomb's Law: Difficulties with Continuous Charge Distributions
Utilizing the integral expression of Coulomb's Law to determine the electric
potential from a continuous charge distribution is a canonical exercise in
Electricity and Magnetism (E&M). In this study, we use both think-aloud
interviews and responses to traditional exam questions to investigate student
difficulties with this topic at the upper-division level. Leveraging a
theoretical framework for the use of mathematics in physics, we discuss how
students activate, construct, execute and reflect on the integral form of
Coulomb's Law when solving problems with continuous charge distributions. We
present evidence that junior-level E&M students have difficulty mapping
physical systems onto the mathematical expression for the Coulomb potential.
Common challenges include difficulty expressing the difference vector in
appropriate coordinates as well as determining expressions for the differential
charge element and limits of integration for a specific charge distribution. We
discuss possible implications of these findings for future research directions
and instructional strategies.Comment: 5 pages, 1 figure, 2 tables, accepted to 2012 PERC Proceeding
ACER: A Framework on the Use of Mathematics in Upper-division Physics
At the University of Colorado Boulder, as part of our broader efforts to
transform middle- and upper-division physics courses, we research students'
difficulties with particular concepts, methods, and tools in classical
mechanics, electromagnetism, and quantum mechanics. Unsurprisingly, a number of
difficulties are related to students' use of mathematical tools (e.g.,
approximation methods). Previous work has documented a number of challenges
that students must overcome to use mathematical tools fluently in introductory
physics (e.g., mapping meaning onto mathematical symbols). We have developed a
theoretical framework to facilitate connecting students' difficulties to
challenges with specific mathematical and physical concepts. In this paper, we
motivate the need for this framework and demonstrate its utility for both
researchers and course instructors by applying it to frame results from
interview data on students' use of Taylor approximations.Comment: 10 pages, 1 figures, 2 tables, accepted to the 2012 PERC Proceeding
Excimer lasers
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage
Constraints on the origin of the first light from SN2014J
We study the very early lightcurve of supernova 2014J (SN 2014J) using the
high-cadence broad-band imaging data obtained by the Kilodegree Extremely
Little Telescope (KELT), which fortuitously observed M 82 around the time of
the explosion, starting more than two months prior to detection, with up to 20
observations per night. These observations are complemented by observations in
two narrow-band filters used in an H survey of nearby galaxies by the
intermediate Palomar Transient Factory (iPTF) that also captured the first days
of the brightening of the \sn. The evolution of the lightcurves is consistent
with the expected signal from the cooling of shock heated material of large
scale dimensions, \gsim 1 R_{\odot}. This could be due to heated material of
the progenitor, a companion star or pre-existing circumstellar environment,
e.g., in the form of an accretion disk. Structure seen in the lightcurves
during the first days after explosion could also originate from radioactive
material in the outer parts of an exploding white dwarf, as suggested from the
early detection of gamma-rays. The model degeneracy translates into a
systematic uncertainty of days on the estimate of the first light
from SN 2014J.Comment: Accepted by ApJ. Companion paper by Siverd et al, arXiv:1411.415
Activation mechanisms in sodium-doped Silicon MOSFETs
We have studied the temperature dependence of the conductivity of a silicon
MOSFET containing sodium ions in the oxide above 20 K. We find the impurity
band resulting from the presence of charges at the silicon-oxide interface is
split into a lower and an upper band. We have observed activation of electrons
from the upper band to the conduction band edge as well as from the lower to
the upper band. A possible explanation implying the presence of Hubbard bands
is given.Comment: published in J. Phys. : Condens. Matte
Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478
The SDSS III APOGEE survey recently identified two new Ori E type
candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating
massive stars whose large (kGauss) magnetic fields confine circumstellar
material around these systems. Our analysis of multi-epoch photometric
observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals
the presence of a 0.7701 day period in each dataset, suggesting the
system is amongst the faster known Ori E analogs. We also see clear
evidence that the strength of H-alpha, H I Brackett series lines, and He I
lines also vary on a 0.7701 day period from our analysis of multi-epoch,
multi-wavelength spectroscopic monitoring of the system from the APO 3.5m
telescope. We trace the evolution of select emission line profiles in the
system, and observe coherent line profile variability in both optical and
infrared H I lines, as expected for rigidly rotating magnetosphere stars. We
also analyze the evolution of the H I Br-11 line strength and line profile in
multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The
observed periodic behavior is consistent with that recently reported by Sikora
and collaborators in optical spectra.Comment: Accepted in ApJ
Survey for Transiting Extrasolar Planets in Stellar Systems IV: Variables in the Field of NGC 1245
The Survey for Transiting Extrasolar Planets in Stellar Systems (STEPSS)
project is a search for planetary transits in open clusters. In this paper, we
analyze the STEPSS observations of the open cluster NGC 1245 to determine the
variable star content of the cluster. Out of 6787 stars observed with V < 22,
of which ~870 are cluster members, we find 14 stars with clear intrinsic
variability that are potential cluster members, and 29 clear variables that are
not cluster members. None of these variables have been previously identified.
We present light curves, finding charts, and stellar/photometric data on these
variable objects. Several of the interacting binaries have estimated distances
consistent with the cluster distance determined from isochrone fits to the
color magnitude diagram. Four stars at the main sequence turnoff of the cluster
have light curves consistent with gamma Doradus variability. If these gamma
Doradus candidates are confirmed, they represent the oldest and coolest members
of this class of variable discovered to date.Comment: 20 pages, 15 figures. Submitted to AJ. PDF version with
full-resolution figures at http://www.astronomy.ohio-state.edu/~pepper/ms.pd
- …