10,079 research outputs found

    BRAVO economic study of LANDSAT follow-on

    Get PDF
    The LANDSAT Follow-On satellite consists of two major systems: the instrument module and the Multi-Mission Modular Spacecraft (MMS). The instrument module contains the thematic mapper and the five-band multispectral scanner instruments. The instrument module also includes the solar array, the tracking and data relay satellite (TDRS) antenna, and the wideband data module. The MMS contains the modularized and standardized power, propulsion, attitude control, and command and data handling subsystems. The Shuttle will be supporting the LANDSAT Follow-On system. The LANDSAT Follow-On Project plans two Delta 3910 launches. The first is scheduled for 1981; the second Delta launch will occur as needed to keep one satellite operational on orbit. The second satellite will be ready six months after the first. It could be launched any time after that. Shuttle support of the system could begin in early 1983 but would be scheduled to start after the second Delta launch

    Instabilities in neutrino-plasma density waves

    Get PDF
    One examines the interaction and possible resonances between supernova neutrinos and electron plasma waves. The neutrino phase space distribution and its boundary regions are analyzed in detail. It is shown that the boundary regions are too wide to produce non-linear resonant effects. The growth or damping rates induced by neutrinos are always proportional to the neutrino flux and GF2G_{{\rm F}}^{2}.Comment: 9 pages, a few words modified to match PRD publicatio

    Artefacts and <A2> power corrections : revisiting the MOM Z_psi and Z_V

    Get PDF
    We extract the power corrections due to the A^2 condensate in the overlap quark propagator (vector part of the inverse propagator Z_psi). The results are consistent with the previous gluon analysis. The role of artefacts is extensively discussed.Comment: 33 pages, 5 figure

    Time Resolved Correlation measurements of temporally heterogeneous dynamics

    Full text link
    Time Resolved Correlation (TRC) is a recently introduced light scattering technique that allows to detect and quantify dynamic heterogeneities. The technique is based on the analysis of the temporal evolution of the speckle pattern generated by the light scattered by a sample, which is quantified by c_I(t,τ)c\_I(t,\tau), the degree of correlation between speckle images recorded at time tt and t+τt+\tau. Heterogeneous dynamics results in significant fluctuations of c_I(t,τ)c\_I(t,\tau) with time tt. We describe how to optimize TRC measurements and how to detect and avoid possible artifacts. The statistical properties of the fluctuations of c_Ic\_I are analyzed by studying their variance, probability distribution function, and time autocorrelation function. We show that these quantities are affected by a noise contribution due to the finite number NN of detected speckles. We propose and demonstrate a method to correct for the noise contribution, based on a NN\to \infty extrapolation scheme. Examples from both homogeneous and heterogeneous dynamics are provided. Connections with recent numerical and analytical works on heterogeneous glassy dynamics are briefly discussed.Comment: 19 pages, 15 figures. Submitted to PR

    The Warwick Hip Trauma Evaluation One - an abridged protocol for the WHiTE One Study AN EMBEDDED RANDOMISED TRIAL COMPARING THE X-BOLT WITH SLIDING HIP SCREW FIXATION IN EXTRACAPSULAR HIP FRACTURES

    Get PDF
    Fractures of the proximal femur are one of the greatest challenges facing the medical community, constituting a heavy socioeconomic burden worldwide. Controversy exists regarding the optimal treatment for patients with unstable trochanteric proximal femoral fractures. The recognised treatment alternatives are extramedullary fixation usually with a sliding hip screw and intramedullary fixation with a cephalomedullary nail. Current evidence suggests that best results and lowest complication rates occur using a sliding hip screw. Complications in these difficult fractures are relatively common regardless of type of treatment. We believe that a novel device, the X-Bolt dynamic plating system, may offer superior fixation over a sliding hip screw with lower reoperation risk and better function. We therefore propose to investigate the clinical effectiveness of the X-bolt dynamic plating system compared with standard sliding hip screw fixation within the framework of a the larger WHiTE (Warwick Hip Trauma Evaluation) Comprehensive Cohort Study. Cite this article: Bone Joint Res 2013;2:206–9

    Using tasks to explore teacher knowledge in situation-specific contexts

    Get PDF
    This article was published in the journal, Journal of Mathematics Teacher Education [© Springer] and the original publication is available at www.springerlink.comResearch often reports an overt discrepancy between theoretically/out-of context expressed teacher beliefs about mathematics and pedagogy and actual practice. In order to explore teacher knowledge in situation-specific contexts we have engaged mathematics teachers with classroom scenarios (Tasks) which: are hypothetical but grounded on learning and teaching issues that previous research and experience have highlighted as seminal; are likely to occur in actual practice; have purpose and utility; and, can be used both in (pre- and in-service) teacher education and research through generating access to teachers’ views and intended practices. The Tasks have the following structure: reflecting upon the learning objectives within a mathematical problem (and solving it); examining a flawed (fictional) student solution; and, describing, in writing, feedback to the student. Here we draw on the written responses to one Task (which involved reflecting on solutions of x+x−1=0 of 53 Greek in-service mathematics teachers in order to demonstrate the range of teacher knowledge (mathematical, didactical and pedagogical) that engagement with these tasks allows us to explore

    Exclusive Higgs Boson Production with bottom quarks at Hadron Colliders

    Full text link
    We present the next-to-leading order QCD corrected rate for the production of a scalar Higgs boson with a pair of high p_T bottom and anti-bottom quarks at the Tevatron and at the Large Hadron Collider. Results are given for both the Standard Model and the Minimal Supersymmetric Standard Model. The exclusive b-bbar-h production rate is small in the Standard Model, but it can be greatly enhanced in the Minimal Supersymmetric Standard Model for large tan(beta), making b-bbar-h an important discovery mode. We find that the next-to-leading order QCD results are much less sensitive to the renormalization and factorization scales than the lowest order results, but have a significant dependence on the choice of the renormalization scheme for the bottom quark Yukawa coupling.Comment: 27 pages, 17 figures, RevTeX

    An alternative model for the electroweak symmetry breaking sector and its signature in future e-gamma colliders

    Full text link
    We perform a preliminary study of the deviations from the Standard Model prediction for the cross section for the process eγνeWγe \gamma \rightarrow \nu_e W \gamma. We work in the context of a higgsless chiral lagrangian model that includes an extra vector resonance VV and an anomalous γWV\gamma W V coupling. We find that this cross section can provide interesting constraints on the free parameters of the model once it is measured in future eγe \gamma colliders.Comment: LaTex , 14 pages, 5 figures not included but available as postscript files upon request, NUB-3086/94-T

    Superprocesses as models for information dissemination in the Future Internet

    Full text link
    Future Internet will be composed by a tremendous number of potentially interconnected people and devices, offering a variety of services, applications and communication opportunities. In particular, short-range wireless communications, which are available on almost all portable devices, will enable the formation of the largest cloud of interconnected, smart computing devices mankind has ever dreamed about: the Proximate Internet. In this paper, we consider superprocesses, more specifically super Brownian motion, as a suitable mathematical model to analyse a basic problem of information dissemination arising in the context of Proximate Internet. The proposed model provides a promising analytical framework to both study theoretical properties related to the information dissemination process and to devise efficient and reliable simulation schemes for very large systems
    corecore