1,774 research outputs found

    Localization of Gauge Fields and Monopole Tunnelling

    Get PDF
    We study the dynamical localization of a massless gauge field on a lower-dimensional surface (2-brane). In flat space, the necessary and sufficient condition for this phenomenon is the existence of confinement in the bulk. The resulting configuration is equivalent to a dual Josephson junction. This duality leads to an interesting puzzle, as it implies that a localized massless theory, even in the Abelian case, must become confining at exponentially large distances. Through the use of topological arguments we clarify the physics behind this large-distance confinement and identify the instantons of the brane world-volume theory that are responsible for its appearance. We show that they correspond to the (condensed) bulk magnetic charges (monopoles), that occasionally tunnel through the brane and induce weak confinement of the brane theory. We consider the possible generalization of this effect to higher dimensions and discuss phenomenological bounds on the confinement of electric charges at exponentially large distances within our Universe.Comment: 11 pages, 3 figures, improvements in the presentation, version to appear in Physical Review

    Energy Absorption During Running by Leg Muscles in a Cockroach

    Get PDF
    Biologists have traditionally focused on a muscle\u27s ability to generate power. By determining muscle length, strain and activation pattern in the cockroach Blaberus discoidalis, we discovered leg extensor muscles that operate as active dampers that only absorb energy during running. Data from running animals were compared with measurements of force and power production of isolated muscles studied over a range of stimulus conditions and muscle length changes. We studied the trochanter-femoral extensor muscles 137 and 179, homologous leg muscles of the mesothoracic and metathoracic legs, respectively. Because each of these muscles is innervated by a single excitatory motor axon, the activation pattern of the muscle could be defined precisely. Work loop studies using sinusoidal strains at 8 Hz showed these trochanter-femoral extensor muscles to be quite capable actuators, able to generate a maximum of 19-25 W kg-1 (at 25ºC). The optimal conditions for power output were four stimuli per cycle (interstimulus interval 11 ms), a strain of approximately 4%, and a stimulation phase such that the onset of the stimulus burst came approximately half-way through the lengthening phase of the cycle. High-speed video analysis indicated that the actual muscle strain during running was 12% in the mesothoracic muscles and 16% in the metathoracic ones. Myographic recordings during running showed on average 3-4 muscle action potentials per cycle, with the timing of the action potentials such that the burst usually began shortly after the onset of shortening. Imposing upon the muscle in vitro the strain, stimulus number and stimulus phase characteristic of running generated work loops in which energy was absorbed (-25 W kg-1) rather than produced. Simulations exploring a wide parameter space revealed that the dominant parameter that determines function during running is the magnitude of strain. Strains required for the maximum power output by the trochanter-femoral extensor muscles simply do not occur during constant, average-speed running. Joint angle ranges of the coxa-trochanter-femur joint during running were 3-4 times greater than the changes necessary to produce maximum power output. None of the simulated patterns of stimulation or phase resulted in power production when strain magnitude was greater than 5%. The trochanter-femoral extensor muscles 137/179 of a cockroach running at its preferred speed of 20 cm s-1 do not operate under conditions which maximize either power output or efficiency. In vitro measurements, however, demonstrate that these muscles absorb energy, probably to provide control of leg flexion and to aid in its reversal

    The Cost of Stability in Coalitional Games

    Get PDF
    A key question in cooperative game theory is that of coalitional stability, usually captured by the notion of the \emph{core}--the set of outcomes such that no subgroup of players has an incentive to deviate. However, some coalitional games have empty cores, and any outcome in such a game is unstable. In this paper, we investigate the possibility of stabilizing a coalitional game by using external payments. We consider a scenario where an external party, which is interested in having the players work together, offers a supplemental payment to the grand coalition (or, more generally, a particular coalition structure). This payment is conditional on players not deviating from their coalition(s). The sum of this payment plus the actual gains of the coalition(s) may then be divided among the agents so as to promote stability. We define the \emph{cost of stability (CoS)} as the minimal external payment that stabilizes the game. We provide general bounds on the cost of stability in several classes of games, and explore its algorithmic properties. To develop a better intuition for the concepts we introduce, we provide a detailed algorithmic study of the cost of stability in weighted voting games, a simple but expressive class of games which can model decision-making in political bodies, and cooperation in multiagent settings. Finally, we extend our model and results to games with coalition structures.Comment: 20 pages; will be presented at SAGT'0

    Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions

    Full text link
    We study the optimal design of switching measurements of small Josephson junction circuits which operate in the macroscopic quantum tunnelling regime. Starting from the D-optimality criterion we derive the optimal design for the estimation of the unknown parameters of the underlying Gumbel type distribution. As a practical method for the measurements, we propose a sequential design that combines heuristic search for initial estimates and maximum likelihood estimation. The presented design has immediate applications in the area of superconducting electronics implying faster data acquisition. The presented experimental results confirm the usefulness of the method. KEY WORDS: optimal design, D-optimality, logistic regression, complementary log-log link, quantum physics, escape measurement

    Cardiovascular Magnetic Resonance Imaging of Scar Development Following Pulmonary Vein Isolation: A Prospective Study

    Get PDF
    Aims Cardiovascular magnetic resonance (MR) provides non-invasive assessment of early (24-hour) edema and injury following pulmonary vein isolation (by ablation) and subsequent scar formation. We hypothesize that 24-hours after ablation, cardiovascular MR would demonstrate a pattern of edema and injury due to ablation and the severity would correlate with subsequent scar. Methods: Fifteen atrial fibrillation patients underwent cardiovascular MR prior to pulmonary vein isolation, 24-hours post (N = 11) and 30-days post (N = 7) ablation, with T2-weighted (T2W) and late gadolinium enhancement (LGE) imaging. Left atrial wall thickness, edema enhancement ratio and LGE enhancement were assessed at each time point. Volumes of LGE and edema enhancement were measured, and the circumferential presence of injury was assessed at 24-hours, including comparison with LGE enhancement at 30 days. Results: Left atrial wall thickness was increased 24-hours post-ablation (10.7±4.1 mm vs. 7.0±1.8 mm pre-PVI, p<0.05). T2W enhancement at 24-hours showed increased edema enhancement ratio (1.5±0.4 for post-ablation, vs. 0.9±0.2 pre-ablation, p<0.001). Edema and LGE volumes at 24-hours were correlated with 30-day LGE volume (R = 0.76, p = 0.04, and R = 0.74, p = 0.09, respectively). Using a 16 segment model for assessment, 24-hour T2W had sensitivity, specificity, and accuracy of 82%, 63%, and 79% respectively, for predicting 30-day LGE. 24-hour LGE had sensitivity, specificity, and accuracy of 91%, 47%, and 84%. Conclusions: Increased left atrial wall thickening and edema were characterized on cardiovascular MR early post-ablation, and found to correlate with 30-day LGE scar

    Response of thin-film SQUIDs to applied fields and vortex fields: Linear SQUIDs

    Full text link
    In this paper we analyze the properties of a dc SQUID when the London penetration depth \lambda is larger than the superconducting film thickness d. We present equations that govern the static behavior for arbitrary values of \Lambda = \lambda^2/d relative to the linear dimensions of the SQUID. The SQUID's critical current I_c depends upon the effective flux \Phi, the magnetic flux through a contour surrounding the central hole plus a term proportional to the line integral of the current density around this contour. While it is well known that the SQUID inductance depends upon \Lambda, we show here that the focusing of magnetic flux from applied fields and vortex-generated fields into the central hole of the SQUID also depends upon \Lambda. We apply this formalism to the simplest case of a linear SQUID of width 2w, consisting of a coplanar pair of long superconducting strips of separation 2a, connected by two small Josephson junctions to a superconducting current-input lead at one end and by a superconducting lead at the other end. The central region of this SQUID shares many properties with a superconducting coplanar stripline. We calculate magnetic-field and current-density profiles, the inductance (including both geometric and kinetic inductances), magnetic moments, and the effective area as a function of \Lambda/w and a/w.Comment: 18 pages, 20 figures, revised for Phys. Rev. B, the main revisions being to denote the effective flux by \Phi rather than

    Phase Modulated Thermal Conductance of Josephson Weak Links

    Full text link
    We present a theory for quasiparticle heat transport through superconducting weak links. The thermal conductance depends on the phase difference (ϕ\phi) of the superconducting leads. Branch conversion processes, low-energy Andreev bound states near the contact and the suppression of the local density of states near the gap edge are related to phase-sensitive transport processes. Theoretical results for the influence of junction transparency, temperature and disorder, on the phase modulation of the conductance are reported. For high-transmission weak links, D1D\to 1, the formation of an Andreev bound state at ϵb=Δcos(ϕ/2)\epsilon_{\text{\tiny b}}=\Delta\cos(\phi/2) leads to suppression of the density of states for the continuum excitations that transport heat, and thus, to a reduction in the conductance for ϕπ\phi\simeq\pi. For low-transmission (D1D\ll 1) barriers resonant scattering at energies ϵ(1+D/2)Δ\epsilon\simeq(1+D/2)\Delta leads to an increase in the thermal conductance as TT drops below TcT_c (for phase differences near ϕ=π\phi=\pi).Comment: 4 pages, 3 figures Expanded discussion of boundary conditions for Ricatti amplitude

    Microscopic model of critical current noise in Josephson-junction qubits: Subgap resonances and Andreev bound states

    Full text link
    We propose a microscopic model of critical current noise in Josephson-junctions based on individual trapping-centers in the tunnel barrier hybridized with electrons in the superconducting leads. We calculate the noise exactly in the limit of no on-site Coulomb repulsion. Our result reveals a noise spectrum that is dramatically different from the usual Lorentzian assumed in simple models. We show that the noise is dominated by sharp subgap resonances associated to the formation of pairs of Andreev bound states, thus providing a possible explanation for the spurious two-level systems (microresonators) observed in Josephson junction qubits [R.W. Simmonds et al., Phys. Rev. Lett. 93, 077003 (2004)]. Another implication of our model is that each trapping-center will contribute a sharp dielectric resonance only in the superconducting phase, providing an effective way to validate our results experimentally. We derive an effective Hamiltonian for a qubit interacting with Andreev bound states, establishing a direct connection between phenomenological models and the microscopic parameters of a Fermionic bath.Comment: 11 pages, 8 figure

    Electrodynamics of Abrikosov vortices: the Field Theoretical Formulation

    Full text link
    Electrodynamic phenomena related to vortices in superconductors have been studied since their prediction by Abrikosov, and seem to hold no fundamental mysteries. However, most of the effects are treated separately, with no guiding principle. We demonstrate that the relativistic vortex worldsheet in spacetime is the object that naturally conveys all electric and magnetic information, for which we obtain simple and concise equations. Breaking Lorentz invariance leads to down-to-earth Abrikosov vortices, and special limits of these equations include for instance dynamic Meissner screening and the AC Josephson relation. On a deeper level, we explore the electrodynamics of two-form sources in the absence of electric monopoles, in which the electromagnetic field strength itself acquires the characteristics of a gauge field. This novel framework leaves room for unexpected surprises.Comment: LaTeX, 23 pages, 5 figure
    corecore