974 research outputs found

    Twisted duality of the CAR-Algebra

    Get PDF
    We give a complete proof of the twisted duality property M(q)'= Z M(q^\perp) Z* of the (self-dual) CAR-Algebra in any Fock representation. The proof is based on the natural Halmos decomposition of the (reference) Hilbert space when two suitable closed subspaces have been distinguished. We use modular theory and techniques developed by Kato concerning pairs of projections in some essential steps of the proof. As a byproduct of the proof we obtain an explicit and simple formula for the graph of the modular operator. This formula can be also applied to fermionic free nets, hence giving a formula of the modular operator for any double cone.Comment: 32 pages, Latex2e, to appear in Journal of Mathematical Physic

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances

    Anomalous Scale Dimensions from Timelike Braiding

    Full text link
    Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields of anomalous scaling dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions. Starting from the old observations on conformal superselection sectors related to the anomalous dimensions via the phases which appear in the spectral decomposition of the center of the conformal covering group Z(SO(d,2)~),Z(\widetilde{SO(d,2)}), we explore the possibility of a timelike braiding structure consistent with the timelike ordering which refines and explains the central decomposition. We regard this as a preparatory step in a new construction attempt of interacting conformal quantum field theories in D=4 spacetime dimensions. Other ideas of constructions based on the AdS5AdS_{5}-CQFT4CQFT_{4} or the perturbative SYM approach in their relation to the present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages tcilatex, 3 latexcad figure

    The Conformal Spin and Statistics Theorem

    Get PDF
    We prove the equality between the statistics phase and the conformal univalence for a superselection sector with finite index in Conformal Quantum Field Theory on S1S^1. A relevant point is the description of the PCT symmetry and the construction of the global conjugate charge.Comment: plain tex, 22 page

    Coral development: from classical embryology to molecular control

    Get PDF
    The phylum Cnidaria is the closest outgroup to the triploblastic metazoans and as such offers unique insights into evolutionary questions at several levels. In the post-genomic era, a knowledge of the gene complement of representative cnidarians will be important for understanding the relationship between the expansion of gene families and the evolution of morphological complexity among more highly evolved metazoans. Studies of cnidarian development and its molecular control will provide information about the origins of the major bilaterian body axes, the origin of the third tissue layer, the mesoderm, and the evolution of nervous system patterning. We are studying the cnidarian Acropora millepora, a reef building scleractinian coral, and a member of the basal cnidarian class, the Anthozoa. We review ourwork on descriptive embryology and studies of selected transcription factor gene families, where our knowledge from Acropora is particularly advanced relative to other cnidarians. We also describe a recent preliminary whole genome initiative, a coral EST database.Eldon E. Ball, David C. Hayward, John S. Reece-Hoyes, Nikki R. Hislop, Gabrielle Samuel, Robert Saint, Peter L. Harrison and David J. Mille

    Modular Structure and Duality in Conformal Quantum Field Theory

    Full text link
    Making use of a recent result of Borchers, an algebraic version of the Bisognano-Wichmann theorem is given for conformal quantum field theories, i.e. the Tomita-Takesaki modular group associated with the von Neumann algebra of a wedge region and the vacuum vector concides with the evolution given by the rescaled pure Lorentz transformations preserving the wedge. A similar geometric description is valid for the algebras associated with double cones. Moreover essential duality holds on the Minkowski space MM, and Haag duality for double cones holds provided the net of local algebras is extended to a pre-cosheaf on the superworld M~\tilde M, i.e. the universal covering of the Dirac-Weyl compactification of MM. As a consequence a PCT symmetry exists for any algebraic conformal field theory in even space-time dimension. Analogous results hold for a Poincar\'e covariant theory provided the modular groups corresponding to wedge algebras have the expected geometrical meaning and the split property is satisfied. In particular the Poincar\'e representation is unique in this case.Comment: 23 pages, plain TeX, TVM26-12-199

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle
    corecore