4,793 research outputs found

    Superdiffusion of massive particles induced by multi-scale velocity fields

    Full text link
    We study drag-induced diffusion of massive particles in scale-free velocity fields, where superdiffusive behavior emerges due to the scale-free size distribution of the vortices of the underlying velocity field. The results show qualitative resemblance to what is observed in fluid systems, namely the diffusive exponent for the mean square separation of pairs of particles and the preferential concentration of the particles, both as a function of the response time.Comment: 5 pages, 5 figures. Accepted for publication in EP

    Simultaneous Observations of Comet C/2002 T7 (LINEAR) with the Berkeley-Illinois-Maryland Association and Owens Valley Radio Observatory Interferometers: HCN and CH_3OH

    Get PDF
    We present observations of HCN J = 1-0 and CH_3OH J(K_a, K_c) = 3(1, 3)-4(0, 4) A+ emission from comet C/2002 T7 (LINEAR) obtained simultaneously with the Owens Valley Radio Observatory (OVRO) and Berkeley-Illinois-Maryland Association (BIMA) millimeter interferometers. We combined the data from both arrays to increase the (u, v) sampling and signal to noise of the detected line emission. We also report the detection of CH_3OH J(K_a, K_c) = 8(0, 8)-7(1, 7) A^+ with OVRO data alone. Using a molecular excitation code that includes the effects of collisions with water and electrons, as well as pumping by the Solar infrared photons (for HCN alone), we find a production rate of HCN of 2.9 × 10^(26) s^(–1) and for CH_3OH of 2.2 × 10^(27) s^(–1). Compared to the adopted water production rate of 3 × 10^(29) s^(–1), this corresponds to an HCN/H_2O ratio of 0.1% and a CH_3OH/H_2O ratio of 0.7%. We critically assess the uncertainty of these values due to the noise (~10%), the uncertainties in the adopted comet model (~50%), and the uncertainties in the adopted collisional excitation rates (up to a factor of 2). Pumping by Solar infrared photons is found to be a minor effect for HCN, because our 15" synthesized beam is dominated by the region in the coma where collisions dominate. Since the uncertainties in the derived production rates are at least as large as one-third of the differences found between comets, we conclude that reliable collision rates and an accurate comet model are essential. Because the collisionally dominated region critically depends on the water production rate, using the same approximate method for different comets may introduce biases in the derived production rates. Multiline observations that directly constrain the molecular excitation provide much more reliable production rates

    Potential for Solar System Science with the ngVLA

    Get PDF
    Radio wavelength observations of solar system bodies are a powerful method of probing many characteristics of those bodies. From surface and subsurface, to atmospheres (including deep atmospheres of the giant planets), to rings, to the magnetosphere of Jupiter, these observations provide unique information on current state, and sometimes history, of the bodies. The ngVLA will enable the highest sensitivity and resolution observations of this kind, with the potential to revolutionize our understanding of some of these bodies. In this article, we present a review of state-of-the-art radio wavelength observations of a variety of bodies in our solar system, varying in size from ring particles and small near-Earth asteroids to the giant planets. Throughout the review we mention improvements for each body (or class of bodies) to be expected with the ngVLA. A simulation of a Neptune-sized object is presented in Section 6. Section 7 provides a brief summary for each type of object, together with the type of measurements needed for all objects throughout the Solar System

    The impact of a large object with Jupiter in July 2009

    Full text link
    On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55^{\circ}S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory opposite and with a lower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4,800 km east-west and 2,500 km north-south, with those produced by the SL9 fragments, and dynamical calculations of pre-impact orbit, indicate that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890-nm and K (2.03-2.36 {\mu}m) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary cloud.Comment: 15 pages, 5 figure

    A Bima Array Survey of Molecules in Comets Linear (C/2002 T7) and Neat (C/2001 Q4)

    Get PDF
    We present an interferometric search for large molecules, including methanol, methyl cyanide, ethyl cyanide, ethanol, and methyl formate in comets LINEAR (C/2002 T7) and NEAT (C/2001 Q4) with the Berkeley-Illinois-Maryland Association (BIMA) array. In addition, we also searched for transitions of the simpler molecules CS, SiO, HNC, HN13C and 13CO . We detected transitions of methanol and CS around Comet LINEAR and one transition of methanol around Comet NEAT within a synthesized beam of ~20''. We calculated the total column density and production rate of each molecular species using the variable temperature and outflow velocity (VTOV) model described by Friedel et al.(2005).Considering the molecular production rate ratios with respect to water, Comet T7 LINEAR is more similar to Comet Hale-Bopp while Comet Q4 NEAT is more similar to Comet Hyakutake. It is unclear, however, due to such a small sample size, whether there is a clear distinction between a Hale-Bopp and Hyakutake class of comet or whether comets have a continuous range of molecular production rate ratios.Comment: Accepted for Publication in the Astrophysical Journa

    Confirmation and Analysis of Circular Polarization from Sagittarius A*

    Full text link
    Recently Bower et al. (1999b) have reported the detection of circular polarization from the Galactic Center black hole candidate, Sagittarius A*. We provide an independent confirmation of this detection, and provide some analysis on the possible mechanisms.Comment: 14 pages, to appear in Astrophysical Journal Letter

    Morphology of Thermoset Polyimides by Positron Annihilation Spectroscopy

    Get PDF
    Thermoset polyimides have great potential for successfully meeting tough stress and temperature challenges in the advanced aircraft development program. However, studies of structure/property relationships in these materials have not been very successful so far. Positron annihilation spectroscopy has been used to investigate free volumes and associated parameters. It has been noted that the free volume correlates well with the molecular weight, cross-link density and thermal coefficient of expansion of these materials. Currently no other techniques are available for direct measurement of these parameters. Experimental results and their interpretations will be discussed

    Combined BIMA and OVRO observations of comet C/1999 S4 (LINEAR)

    Get PDF
    We present results from an observing campaign of the molecular content of the coma of comet C/1999 S4 (LINEAR) carried out jointly with the millimeter-arrays of the Berkeley-Illinois-Maryland Association (BIMA) and the Owens Valley Radio Observatory (OVRO). Using the BIMA array in autocorrelation (`single-dish') mode, we detected weak HCN J=1-0 emission from comet C/1999 S4 (LINEAR) at 14 +- 4 mK km/s averaged over the 143" beam. The three days over which emission was detected, 2000 July 21.9-24.2, immediately precede the reported full breakup of the nucleus of this comet. During this same period, we find an upper limit for HCN 1-0 of 144 mJy/beam km/s (203 mK km/s) in the 9"x12" synthesized beam of combined observations of BIMA and OVRO in cross-correlation (`imaging') mode. Together with reported values of HCN 1-0 emission in the 28" IRAM 30-meter beam, our data probe the spatial distribution of the HCN emission from radii of 1300 to 19,000 km. Using literature results of HCN excitation in cometary comae, we find that the relative line fluxes in the 12"x9", 28" and 143" beams are consistent with expectations for a nuclear source of HCN and expansion of the volatile gases and evaporating icy grains following a Haser model.Comment: 18 pages, 3 figures. Uses aastex. AJ in pres

    Triplicity and Physical Characteristics of Asteroid (216) Kleopatra

    Full text link
    To take full advantage of the September 2008 opposition passage of the M-type asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis et al., 2008). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64+/-0.02 10^18 Kg. This translates into a bulk density of 3.6 +/-0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ~ 30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.Comment: 35 pages, 3 Tables, 9 Figures. In press to Icaru
    • …
    corecore