4,609 research outputs found

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Vip3A Resistance Alleles Exist at High Levels in Australian Targets before Release of Cotton Expressing This Toxin

    Get PDF
    Crops engineered to produce insecticidal crystal (Cry) proteins from the soil bacterium Bacillus thuringiensis (Bt) have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips), also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019–0.038) in H. armigera and 0.008 (n = 248 lines, 0.004–0.015) in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016) and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn

    Highest weight Macdonald and Jack Polynomials

    Full text link
    Fractional quantum Hall states of particles in the lowest Landau levels are described by multivariate polynomials. The incompressible liquid states when described on a sphere are fully invariant under the rotation group. Excited quasiparticle/quasihole states are member of multiplets under the rotation group and generically there is a nontrivial highest weight member of the multiplet from which all states can be constructed. Some of the trial states proposed in the literature belong to classical families of symmetric polynomials. In this paper we study Macdonald and Jack polynomials that are highest weight states. For Macdonald polynomials it is a (q,t)-deformation of the raising angular momentum operator that defines the highest weight condition. By specialization of the parameters we obtain a classification of the highest weight Jack polynomials. Our results are valid in the case of staircase and rectangular partition indexing the polynomials.Comment: 17 pages, published versio

    One- and two-proton transfer reactions with vibrational Nuclei

    Get PDF
    We extend a semiclassical model of transfer reactions to the case in which one of the collision partners is a vibrational nucleus. The model is applied to one- and two-proton stripping reactions in the 37Cl + 98Mo system, for which a rapid transition from normal to anomalous slope in the two proton transfer reaction at energies around the Coulomb barrier is experimentally observed. This behavior is satisfactorily reproduced by the present extension of the model.Comment: LaTeX, 10 pages, 1 figure (PostScript
    corecore