Fractional quantum Hall states of particles in the lowest Landau levels are
described by multivariate polynomials. The incompressible liquid states when
described on a sphere are fully invariant under the rotation group. Excited
quasiparticle/quasihole states are member of multiplets under the rotation
group and generically there is a nontrivial highest weight member of the
multiplet from which all states can be constructed. Some of the trial states
proposed in the literature belong to classical families of symmetric
polynomials. In this paper we study Macdonald and Jack polynomials that are
highest weight states. For Macdonald polynomials it is a (q,t)-deformation of
the raising angular momentum operator that defines the highest weight
condition. By specialization of the parameters we obtain a classification of
the highest weight Jack polynomials. Our results are valid in the case of
staircase and rectangular partition indexing the polynomials.Comment: 17 pages, published versio