595 research outputs found

    Experimental Validation of Contact Dynamics for In-Hand Manipulation

    Full text link
    This paper evaluates state-of-the-art contact models at predicting the motions and forces involved in simple in-hand robotic manipulations. In particular it focuses on three primitive actions --linear sliding, pivoting, and rolling-- that involve contacts between a gripper, a rigid object, and their environment. The evaluation is done through thousands of controlled experiments designed to capture the motion of object and gripper, and all contact forces and torques at 250Hz. We demonstrate that a contact modeling approach based on Coulomb's friction law and maximum energy principle is effective at reasoning about interaction to first order, but limited for making accurate predictions. We attribute the major limitations to 1) the non-uniqueness of force resolution inherent to grasps with multiple hard contacts of complex geometries, 2) unmodeled dynamics due to contact compliance, and 3) unmodeled geometries dueto manufacturing defects.Comment: International Symposium on Experimental Robotics, ISER 2016, Tokyo, Japa

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    BMP‐2 signaling and mechanotransduction synergize to drive osteogenic differentiation via YAP/TAZ

    Get PDF
    Growth factors and mechanical cues synergistically affect cellular functions, triggering a variety of signaling pathways. The molecular levels of such cooperative interactions are not fully understood. Due to its role in osteogenesis, the growth factor bone morphogenetic protein 2 (BMP‐2) is of tremendous interest for bone regenerative medicine, osteoporosis therapeutics, and beyond. Here, contribution of BMP‐2 signaling and extracellular mechanical cues to the osteogenic commitment of C2C12 cells is investigated. It is revealed that these two distinct pathways are integrated at the transcriptional level to provide multifactorial control of cell differentiation. The activation of osteogenic genes requires the cooperation of BMP‐2 pathway‐associated Smad1/5/8 heteromeric complexes and mechanosensitive YAP/TAZ translocation. It is further demonstrated that the Smad complexes remain bound onto and active on target genes, even after BMP‐2 removal, suggesting that they act as a “molecular memory unit.” Thus, synergistic stimulation with BMP‐2 and mechanical cues drives osteogenic differentiation in a programmable fashion

    Review of the development of cesium iodide photocathodes for application to large RICH detectors

    Get PDF
    CsI photocathodes were studied in order to evaluate their potential use as large photo converters in RICH detectors for the PID system of ALICE at LHC in heavy-ion collider mode. It has been demonstrated that a quantum efficiency close to the reference value obtained on small samples can be obtained on CsI layers evaporated on large pad electrodes operated in a MWPC at atmospheric pressure. We present a survey of the results obtained in the laboratory on small samples irradiated with UV-monochromatic beams and with large area RICH detectors of proximity-focusing geometry in a 3 GeV/c pion beam

    The Present Development of CsI Rich Detectors for the ALICE Experiment at CERN

    Get PDF
    The ALICE Collaboration plans to implement a 12m^2 array consisting of 7 proximity focussed C6F^14 liquid radiator RICH modules devoted to the particle identification in the momentum range: 1 GeV/c - 3.5 GeV/c for pions and kaons. A large area CSI-RICH prototype has been designed and built with the aim to validate the detector parameter assumptions made to predict the performance of the High Momentum Particle Identification System (HMPID) of the ALICE Experiment. The main elements of the prototype will be described with emphasis on the engineering solutions adopted. First results from the analysis of multitrack events recorded with this prototype exposed to hadron beams at the CERN SPS will be discussedList of FiguresFigure 1 General view of the ALICE lay-outFigure 2 Schematic layout of the fast CsI-RICHFigure 3 Perspective view of the HMPID layout with the seven RICH modules tilted according to their position with respect to the interaction vertex. The frame that supports the detectors is also shownFigure 4 Top view of the photodetector anode plane with the wire support spacer. One CsI board, out of six forming the pad cathode plane, is also shown.Figure 5 Perspective view of the HMPID honeycomb panel with the three radiator vesselsFigure 6 Cut away view of the HMPID CsI-RICH showing separately each detector component. Kapton buses that carry signals from the pads to the readout electronics are also shownFigure 7 a)number of resolved photoelectrons per event, b)reconstructed Cherenkov angle per photonFigure 8 C6F14 transmission plots before and after the molecular sieve purificationFigure 9 Display plot showing an SPS event. Three tracks are reconstructed by using the tracking chamber telescope, the associated rings are shown in the HMPID prototypeThis publication also appears as INT-98-20

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    Study of the transverse mass spectra of strange particles in Pb-Pb collisions at 158 A GeV/c

    Full text link
    The NA57 experiment has collected high statistics, high purity samples of \PKzS and \PgL, Ξ\Xi and Ω\Omega hyperons produced in Pb-Pb collisions at 158 AA GeV/cc. In this paper we present a study of the transverse mass spectra of these particles for a sample of events corresponding to the most central 53% of the inelastic Pb-Pb cross-section. We analyse the transverse mass distributions in the framework of the blast-wave model for the full sample and, for the first time at the SPS, as a function of the event centrality.Comment: 22 pages, 14 figures, submitted to J. Phys. G: Nucl. Phy

    Identification of High p⊄\rm p_{\perp} Particles with the STAR-RICH Detector

    Full text link
    The STAR-RICH detector extends the particle identification capapbilities of the STAR experiment for charged hadrons at mid-rapidity. This detector represents the first use of a proximity-focusing CsI-based RICH detector in a collider experiment. It provides identification of pions and kaons up to 3 GeV/c and protons up to 5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.Comment: 6 pages, 6 figure
    • 

    corecore