382 research outputs found

    AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress

    Get PDF
    Mammalian brain connectivity requires the coordinated production and migration of billions of neurons and the formation of axons and dendrites. The LKB1/Par4 kinase is required for axon formation during cortical development in vivo partially through its ability to activate SAD-A/B kinases. LKB1 is a master kinase phosphorylating and activating at least 11 other serine/threonine kinases including the metabolic sensor AMP-activated protein kinase (AMPK), which defines this branch of the kinome. A recent study using a gene-trap allele of the β1 regulatory subunit of AMPK suggested that AMPK catalytic activity is required for proper brain development including neurogenesis and neuronal survival. We used a genetic loss-of-function approach producing AMPKα1/α2-null cortical neurons to demonstrate that AMPK catalytic activity is not required for cortical neurogenesis, neuronal migration, polarization, or survival. However, we found that application of metformin or AICAR, potent AMPK activators, inhibit axogenesis and axon growth in an AMPK-dependent manner. We show that inhibition of axon growth mediated by AMPK overactivation requires TSC1/2-mediated inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. Our results demonstrate that AMPK catalytic activity is not required for early neural development in vivo but its overactivation during metabolic stress impairs neuronal polarization in a mTOR-dependent manner

    The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    Get PDF
    Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis

    Local circuit amplification of spatial selectivity in the hippocampus

    Get PDF
    Local circuit architecture facilitates the emergence of feature selectivity in the cerebral cortex1. In the hippocampus, it remains unknown whether local computations supported by specific connectivity motifs2 regulate the spatial receptive fields of pyramidal cells3. Here we developed an in vivo electroporation method for monosynaptic retrograde tracing4 and optogenetics manipulation at single-cell resolution to interrogate the dynamic interaction of place cells with their microcircuitry during navigation. We found a local circuit mechanism in CA1 whereby the spatial tuning of an individual place cell can propagate to a functionally recurrent subnetwork5 to which it belongs. The emergence of place fields in individual neurons led to the development of inverse selectivity in a subset of their presynaptic interneurons, and recruited functionally coupled place cells at that location. Thus, the spatial selectivity of single CA1 neurons is amplified through local circuit plasticity to enable effective multi-neuronal representations that can flexibly scale environmental features locally without degrading the feedforward input structure

    LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons

    Get PDF
    The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. We show here that the serine/threonine kinase LKB1, previously implicated in the establishment of epithelial polarity and control of cell growth, is required for axon specification during neuronal polarization in the mammalian cerebral cortex. LKB1 polarizing activity requires its association with the pseudokinase Stradalpha and phosphorylation by kinases such as PKA and p90RSK, which transduce neurite outgrowth-promoting cues. Once activated, LKB1 phosphorylates and thereby activates SAD-A and SAD-B kinases, which are also required for neuronal polarization in the cerebral cortex. SAD kinases, in turn, phosphorylate effectors such as microtubule-associated proteins that implement polarization. Thus, we provide evidence in vivo and in vitro for a multikinase pathway that links extracellular signals to the intracellular machinery required for axon specification

    TGF-β Signaling Specifies Axons during Brain Development

    Get PDF
    In the mammalian brain, the specification of a single axon and multiple dendrites occurs early in the differentiation of most neuron types. Numerous intracellular signaling events for axon specification have been described in detail. However, the identity of the extracellular factor(s) that initiate neuronal polarity in vivo is unknown. Here, we report that transforming growth factor-β (TGF-β) initiates signaling pathways both in vivo and in vitro to fate naïve neurites into axons. Neocortical neurons lacking the type II TGF-β receptor (TβR2) fail to initiate axons during development. Exogenous TGF-β is sufficient to direct the rapid growth and differentiation of an axon, and genetic enhancement of receptor activity promotes the formation of multiple axons. Finally, we show that the bulk of these TGF-β-dependent events are mediated by site-specific phosphorylation of Par6. These results define an extrinsic cue for neuronal polarity in vivo that patterns neural circuits in the developing brain

    AMP-activated protein kinase mediates mitochondrial fission in response to energy stress

    Get PDF
    Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission

    Netrin-1- 3 1 integrin interactions regulate the migration of interneurons through the cortical marginal zone

    Get PDF
    Cortical GABAergic interneurons, most of which originate in the ganglionic eminences, take distinct tangential migratory trajectories into the developing cerebral cortex. However, the ligand–receptor systems that modulate the tangential migration of distinct groups of interneurons into the emerging cerebral wall remain unclear. Here, we show that netrin-1, a diffusible guidance cue expressed along the migratory routes traversed by GABAergic interneurons, interacts with α3β1 integrin to promote interneuronal migration. In vivo analysis of interneuron-specific α3β1 integrin, netrin-1–deficient mice (α3lox/−Dlx5/6-CIE, netrin-1−/−) reveals specific deficits in the patterns of interneuronal migration along the top of the developing cortical plate, resulting in aberrant interneuronal positioning throughout the cerebral cortex and hippocampus of conditional α3lox/−Dlx5/6-CIE, netrin-1−/− mice. These results indicate that specific guidance mechanisms, such as netrin-1–α3β1 integrin interactions, modulate distinct routes of interneuronal migration and the consequent positioning of groups of cortical interneurons in the developing cerebral cortex

    Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo

    Get PDF
    Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.</p

    Organotypic Brain Cultures for Metastasis Research

    Get PDF
    We thank members of Brain Metastasis Group for critical discussion. Research in the Brain Metastasis Group is supported by MINECO-Retos SAF2017-89643-R (M.V.), Cancer Research Institute CLIP Award 2018 (M.V.), AECC (GCTRA16015SEOA) (M.V.), Bristol-Myers Squibb Melanoma Research Alliance Young Investigator Award 2017 (M.V.), Beug Foundation’s Prize for Metastasis Research 2017 (M.V.), Worldwide Cancer Research (19-0177) (M.V.), H2020-FETOPEN (828972) (M.V.), Fundación Ramón Areces (CIVP19S8163), and La Caixa-Severo Ochoa International PhD Program Fellowship (L.Z.). M.V. is a Ramón y Cajal Investigator (RYC-2013-13365) and an EMBO YIP investigator.N
    • …
    corecore