743 research outputs found

    Dynamic Properties of Charmonium

    Full text link
    Nonrelativistic quark models of charmonia are tested by comparison of theoretical charmonium decay constants, form factors, and γγ\gamma\gamma widths with experiment and lattice gauge computations. The importance of relativistic effects, a running coupling, and the correct implementation of bound state effects are demonstrated. We describe how an improved model and computational techniques resolve several outstanding issues in previous nonrelativistic quark models such as the use of `correction' factors in quark model form factors, artificial energy prescriptions in decay constant calculations, and ad hoc phase space modifications. We comment on the small experimental value of fψ′′f_{\psi''} and the D-wave component of the J/ψJ/\psi. Decay constants and γγ\gamma\gamma widths for bottomonium are also presented.Comment: 22 pages, 22 ps figures (table entries corrected, text modified

    A chromomagnetic mechanism for the X(3872) resonance

    Get PDF
    The chromomagnetic interaction, with proper account for flavour-symmetry breaking, is shown to explain the mass and coupling properties of the X(3872) resonance as a JPCJ^{PC} = 1++^{++} state consisting of a heavy quark-antiquark pair and a light one. It is crucial to introduce all the spin-colour configurations compatible with these quantum numbers and diagonalise the chromomagnetic interaction in this basis. This approach thus differs from the molecular picture DDˉ∗D\bar {D}* and from the diquark-antidiquark picture.Comment: 4 pages - revtex4 - Typos corrected, refs. added, to be published in Phys. Rev.

    Proposal to improve the behaviour of self-energy contributions to the S-matrix

    Full text link
    A simple modification of the definition of the S-matrix is proposed. It is expected that the divergences related to nonzero self-energies are considerably milder with the modified definition than with the usual one. This conjecture is verified in a few examples using perturbation theory. The proposed formula is written in terms of the total Hamiltonian operator and a free Hamiltonian operator and is therefore applicable in any case when these Hamiltonian operators are known.Comment: 24 pages, 1 figure; v2: revised version; v3: section 3 improved. Accepted for publication in Central European Journal of Physics; v4: minor text misprints correcte

    La législation et l'administration allemande en Belgique

    Get PDF
    - L'organisation de l'occupation #19- La tentative de destruction de l'esprit national belge #101- Partie documentaire #145- Table des matières #28

    Two-photon decays of hadronic molecules

    Get PDF
    In many calculations of the two--photon decay of hadronic molecules, the decay matrix element is estimated using the wave function at the origin prescription, in analogy to the two-photon decay of parapositronium. We question the applicability of this procedure to the two-photon decay of hadronic molecules for it introduces an uncontrolled model dependence into the calculation. As an alternative approach, we propose an explicit evaluation of the hadron loop. For shallow bound states, this can be done as an expansion in powers of the range of the molecule binding force. In the leading order one gets the well-known point-like limit answer. We estimate, in a self-consistent and gauge invariant way, the leading range corrections for the two-photon decay width of weakly bound hadronic molecules emerging from kaon loops. We find them to be small. The role of possible short-ranged operators and of the width of the scalars remains to be investigated.Comment: LaTeX2e, 26 pages, new figure and additional appendix added, version to appear in Phys.Rev.

    Production of the Smallest QED Atom: True Muonium (mu^+ mu^-)

    Full text link
    The "true muonium" (mu^+ mu-) and "true tauonium" (tau^+ tau^-) bound states are not only the heaviest, but also the most compact pure QED systems. The rapid weak decay of the tau makes the observation of true tauonium difficult. However, as we show, the production and study of true muonium is possible at modern electron-positron colliders.Comment: 4 pages, ReVTeX, 4 eps figures; minor wording changes and reordering of a reference. Version accepted by Phys. Rev. Let

    Two fermion relativistic bound states: hyperfine shifts

    Full text link
    We discuss the hyperfine shifts of the Positronium levels in a relativistic framework, starting from a two fermion wave equation where, in addition to the Coulomb potential, the magnetic interaction between spins is described by a Breit term. We write the system of four first order differential equations describing this model. We discuss its mathematical features, mainly in relation to possible singularities that may appear at finite values of the radial coordinate. We solve the boundary value problems both in the singular and non singular cases and we develop a perturbation scheme, well suited for numerical computations, that allows to calculate the hyperfine shifts for any level, according to well established physical arguments that the Breit term must be treated at the first perturbative order. We discuss our results, comparing them with the corresponding values obtained from semi-classical expansions.Comment: 16 page

    Soft Photon Spectrum in Orthopositronium and Vector Quarkonium Decays

    Get PDF
    QED gauge invariance, when combined with analyticity, leads to constraints on the low energy end of the emitted photon spectra. This is known as Low's theorem. It is shown that the Ore-Powell result, as well as further developments for the orthopositronium differential decay rate, are in contradiction with Low's theorem, i.e. that their predicted soft photon spectra are incorrect. A solution to this problem is presented. The implications for the orthopositronium lifetime puzzle, the charmonium rho-pi puzzle, the prompt photon spectrum in inclusive quarkonium decays and the extraction of alpha_S from quarkonium annihilation rates are briefly commented.Comment: LaTeX, 10 page

    Facing the Spectator

    Get PDF
    We investigated the familiar phenomenon of the uncanny feeling that represented people in frontal pose invariably appear to ‘‘face you’’ from wherever you stand. We deploy two different methods. The stimuli include the conventional one—a flat portrait rocking back and forth about a vertical axis—augmented with two novel variations. In one alternative, the portrait frame rotates whereas the actual portrait stays motionless and fronto-parallel; in the other, we replace the (flat!) portrait with a volumetric object. These variations yield exactly the same optical stimulation in frontal view, but become grossly different in very oblique views. We also let participants sample their momentary awareness through ‘‘gauge object’’ settings in static displays. From our results, we conclude that the psychogenesis of visual awareness maintains a number—at least two, but most likely more—of distinct spatial frameworks simultaneously involving ‘‘cue–scission.’’ Cues may be effective in one of these spatial frameworks but ineffective or functionally different in other ones
    • …
    corecore