61 research outputs found

    Movement of Xylosandrus germanus (Coleoptera: Curculionidae) in Ornamental Nurseries and Surrounding Habitats

    Get PDF
    Some exotic ambrosia beetles are damaging pests in ornamental nurseries. Xylosandrus germanus (Blandford) is the most problematic ambrosia beetle in Ohio nurseries. Movement of X. germanus in nurseries has not been characterized, and knowledge is lacking on whether infestations originate from within nurseries or surrounding habitats. Flight activity of X. germanus was monitored in nurseries and adjacent wooded areas to determine the source of beetles infesting nurseries, and characterize their movement within nurseries. Ethanol-baited bottle traps were positioned within wooded areas adjacent to commercial nurseries and within nurseries at various distances from the nursery woodlot interface. Flight activity of overwintered X. germanus occurred in wooded areas adjacent to nurseries before occurrence within nurseries. There was a direct relationship between degree-days and the distance from woodlots when X. germanus were first found in traps in spring, with earlier captures closest to wooded areas and latest ones furthest away into the nursery. X. germanus appeared to move into nurseries from adjacent wooded areas, with numbers trapped within nurseries decreasing with distance away from wooded areas. Trees in the interior of nurseries would appear to be subjected to less attack pressure than trees near the nursery border. Intercepting beetles as they move into nurseries might be an effective strategy to reduce attack pressure on valuable trees

    Electronic structure of hydrothermally synthesized single crystal U0.22Th0.78O2

    Get PDF
    Single crystals of ThO2, UO2, and their solid solutions, UxTh1–xO2, have been obtained through various hydrothermal growth conditions. This technique offers the better of two other growth processes: (i) single crystal purity as by photochemical growth of nanocrystals; and (ii) large/bulk sizes as obtained by the arc melt method. The band gap of the UxTh1–xO2 single crystal solid solution, along with the luminescence transition, have been characterized. The occupied and unoccupied structures are determined using ultraviolet and inverse photoemission spectroscopy and the electronic band gap was measured to be 3–4 eV. The strain of incorporating U into the ThO2 is analyzed through Vegard’s law. In this crystal there are defect and impurity sites, likely arising from the kinetic growth process, giving rise to a similar yet slightly different optical gap evident with cathodoluminescence spectroscopy. There is a major luminescence feature spanning the range from 3.18 to 4.96 eV (250–390 nm) with a maximum at 4.09 eV (303 nm), corresponding with the measured electronic band gap. In this paper, the electronic properties of a solid solution U0.22Th0.78O2 are measured and interpreted compared to the pure actinide oxides, ThO2 and UO2

    Comment on "Hysteresis Zone or Locus-Aerodynamics of Bulbous Based Bodies at Low Speeds"

    No full text

    Effects of external burning on spike-induced separated flow

    No full text

    Electronic structure of hydrothermally synthesized single crystal U0.22Th0.78O2

    Get PDF
    Single crystals of ThO2, UO2, and their solid solutions, UxTh1–xO2, have been obtained through various hydrothermal growth conditions. This technique offers the better of two other growth processes: (i) single crystal purity as by photochemical growth of nanocrystals; and (ii) large/bulk sizes as obtained by the arc melt method. The band gap of the UxTh1–xO2 single crystal solid solution, along with the luminescence transition, have been characterized. The occupied and unoccupied structures are determined using ultraviolet and inverse photoemission spectroscopy and the electronic band gap was measured to be 3–4 eV. The strain of incorporating U into the ThO2 is analyzed through Vegard’s law. In this crystal there are defect and impurity sites, likely arising from the kinetic growth process, giving rise to a similar yet slightly different optical gap evident with cathodoluminescence spectroscopy. There is a major luminescence feature spanning the range from 3.18 to 4.96 eV (250–390 nm) with a maximum at 4.09 eV (303 nm), corresponding with the measured electronic band gap. In this paper, the electronic properties of a solid solution U0.22Th0.78O2 are measured and interpreted compared to the pure actinide oxides, ThO2 and UO2
    • …
    corecore