95 research outputs found

    The Hydrodynamic Origin of Neutron Star Kicks

    Full text link
    We present results from a suite of axisymmetric, core-collapse supernova simulations in which hydrodynamic recoil from an asymmetric explosion produces large proto-neutron star (PNS) velocities. We use the adaptive-mesh refinement code CASTRO to self-consistently follow core-collapse, the formation of the PNS and its subsequent acceleration. We obtain recoil velocities of up to 620 km/s at ~1 s after bounce. These velocities are consistent with the observed distribution of pulsar kicks and with PNS velocities obtained in other theoretical calculations. Our PNSs are still accelerating at several hundred km/s at the end of our calculations, suggesting that even the highest velocity pulsars may be explained by hydrodynamic recoil in generic, core-collapse supernovae.Comment: Accepted to MNRAS, replaced with accepted manuscrip

    The Hydrophobic Core of Twin-Arginine Signal Sequences Orchestrates Specific Binding to Tat-Pathway Related Chaperones

    Get PDF
    Redox enzyme maturation proteins (REMPs) bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence. REMP binding protects signal peptides against degradation by proteases. REMPs are also believed to prevent binding of immature pre-proteins to the translocon. The main aim of this work was to better understand the interaction between REMPs and substrate signal sequences. Two REMPs were investigated: DmsD (specific for dimethylsulfoxide reductase, DmsA) and TorD (specific for trimethylamine N-oxide reductase, TorA). Green fluorescent protein (GFP) was genetically fused behind the signal sequences of TorA and DmsA. This ensures native behavior of the respective signal sequence and excludes any effects mediated by the mature domain of the pre-protein. Surface plasmon resonance analysis revealed that these chimeric pre-proteins specifically bind to the cognate REMP. Furthermore, the region of the signal sequence that is responsible for specific binding to the corresponding REMP was identified by creating region-swapped chimeric signal sequences, containing parts of both the TorA and DmsA signal sequences. Surprisingly, specificity is not encoded in the highly variable positively charged N-terminal region of the signal sequence, but in the more similar hydrophobic C-terminal parts. Interestingly, binding of DmsD to its model substrate reduced membrane binding of the pre-protein. This property could link REMP-signal peptide binding to its reported proofreading function

    Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation

    Get PDF
    The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    The Detection of Uranium by a Photoluminescence Test

    No full text

    Eine Nachweismethode für Uran durch ein Photoluminescenzverfahren

    No full text

    Arc spectrographic estimation of chromium in ruby

    No full text
    corecore