4,041 research outputs found

    Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin

    Get PDF
    Intrapopulation variation in resource use occurs in many populations of generalist predators with important community and evolutionary implications. One of the hypothesised mechanisms for such widespread variation is ecological opportunity, i.e. resource availability determined by intrinsic constraints and extrinsic conditions. We combined tracking data and stable isotope analysis to examine how breeding constraints and prey conditions influenced intrapopulation variation in resource use among macaroni penguins Eudyptes chrysolophus. Isotopic variation was also examined as a function of breeding success, individual traits and individual specialisation. Variation in isotope ratios was greatest across multiple tissue types when birds were able to undertake mid-range foraging trips (i.e. during incubation and pre-moult). This variation was highly consistent between years that spanned a 3-fold difference in local krill Euphausia superba density and was also highly consistent at the individual level between 2 years that had similar krill densities. However, by comparing our results with previous work on the same population, it appeared that a decrease in local prey availability can increase intrapopulation variation in resource use during periods with more restricted foraging ranges (i.e. during brood-guard and crèche). This study highlights the importance of considering ecological interactions that operate on multiple spatio-temporal scales when examining the drivers of resource use in populations of generalist predators

    Consistency of a Causal Theory of Radiative Reaction with the Optical Theorem

    Get PDF
    The Abraham-Lorentz-Dirac equation for a point electron, while suffering from runaway solutions and an acausal response to external forces, is compatible with the optical theorem. We show that a theory of radiative reaction that allows for a finite charge distribution is not only causal and free of runaway solutions, but is also consistent with the optical theorem and the standard formula for the Rayleigh scattering cross section.Comment: 4 pages, 2 figure

    Continuum-particle hybrid coupling for mass, momentum and energy transfers in unsteady fluid flow

    Full text link
    The aim of hybrid methods in simulations is to communicate regions with disparate time and length scales. Here, a fluid described at the atomistic level within an inner region P is coupled to an outer region C described by continuum fluid dynamics. The matching of both descriptions of matter is made across an overlapping region and, in general, consists of a two-way coupling scheme (C->P and P->C) which conveys mass, momentum and energy fluxes. The contribution of the hybrid scheme hereby presented is two-fold: first it treats unsteady flows and, more importantly, it handles energy exchange between both C and P regions. The implementation of the C->P coupling is tested here using steady and unsteady flows with different rates of mass, momentum and energy exchange. In particular, relaxing flows described by linear hydrodynamics (transversal and longitudinal waves) are most enlightening as they comprise the whole set of hydrodynamic modes. Applying the hybrid coupling scheme after the onset of an initial perturbation, the cell-averaged Fourier components of the flow variables in the P region (velocity, density, internal energy, temperature and pressure) evolve in excellent agreement with the hydrodynamic trends. It is also shown that the scheme preserves the correct rate of entropy production. We discuss some general requirements on the coarse-grained length and time scales arising from both the characteristic microscopic and hydrodynamic scales.Comment: LaTex, 12 pages, 9 figure

    Hydrogen atom in phase space. The Kirkwood-Rihaczek representation

    Get PDF
    We present a phase-space representation of the hydrogen atom using the Kirkwood-Rikaczek distribution function. This distribution allows us to obtain analytical results, which is quite unique because an exact analytical form of the Wigner functions corresponding to the atom states is not known. We show how the Kirkwood-Rihaczek distribution reflects properties of the hydrogen atom wave functions in position and momentum representations.Comment: 5 pages (and 5 figures

    A stochastic space-time rainfall forecasting system for real time flow forecasting II: Application of SHETRAN and ARNO rainfall runoff models to the Brue catchment

    No full text
    International audienceKey issues involved in converting MTB ensemble forecasts of rainfall into ensemble forecasts of runoff are addressed. The physically-based distributed modelling system, SHETRAN, is parameterised for the Brue catchment, and used to assess the impact of averaging spatially variable MTB rainfall inputs on the accuracy of simulated runoff response. Averaging is found to have little impact for wet antecedent conditions and to lead to some underestimation of peak discharge under dry catchment conditions. The simpler ARNO modelling system is also parameterised for the Brue and SHETRAN and ARNO calibration and validation results are found to be similar. Ensemble forecasts of runoff generated using both SHETRAN and the simpler ARNO modelling system are compared. The ensemble is more spread out with the SHETRAN model, and a likely explanation is that the ARNO model introduces too much smoothing. Nevertheless, the forecasting performance of the simpler model could be adequate for flood warning purposes. Keywords: SHETRAN, ARNO, HYREX, rainfall-runoff model, Brue, real-time flow forecasting</p

    Anomalous diffusion in quantum Brownian motion with colored noise

    Get PDF
    Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading

    Internal evaluation of a physically-based distributed model using data from a Mediterranean mountain catchment

    Get PDF
    An evaluation of the performance of a physically-based distributed model of a small Mediterranean mountain catchment is presented. This was carried out using hydrological response data, including measurements of runoff, soil moisture, phreatic surface level and actual evapotranspiration. <i>A-priori</i> model parameterisation was based as far as possible on property data measured in the catchment. Limited model calibration was required to identify an appropriate value for terms controlling water loss to a deeper regional aquifer. The model provided good results for an initial calibration period, when judged in terms of catchment discharge. However, model performance for runoff declined substantially when evaluated against a consecutive, rather drier, period of data. Evaluation against other catchment responses allowed identification of the problems responsible for the observed lack of model robustness in flow simulation. In particular, it was shown that an incorrect parameterisation of the soil water model was preventing adequate representation of drainage from soils during hydrograph recessions. This excess moisture was then being removed via an overestimation of evapotranspiration. It also appeared that the model underestimated canopy interception. The results presented here suggest that model evaluation against catchment scale variables summarising its water balance can be of great use in identifying problems with model parameterisation, even for distributed models. Evaluation using spatially distributed data yielded less useful information on model performance, owing to the relative sparseness of data points, and problems of mismatch of scale between the measurement and the model grid.</p> <p style='line-height: 20px;'><b>Keywords: </b>physically-based distributed model, SHETRAN, parameterisation, Mediterranean mountain catchment, internal evaluation, multi-respons

    The Star Clusters in the Starburst Irregular Galaxy NGC 1569

    Get PDF
    We examine star clusters in the irregular, starburst galaxy NGC 1569 from HST images. In addition to the two known super star clusters, we identify 45 other clusters that are compact but resolved. Integrated UVI colors of the clusters span a large range, and suggest that ages range from 3 Myrs to 1 Gyr. However, most of the clusters were formed at the tail end of the recent starburst. Numerous clusters in addition to the know super star clusters are similar in luminosity to a small globular cluster. We examined the radial surface brightness of four of the clusters. Their half-light radii and core radii are in the range observed in present-day globular clusters. Therefore, conditions that produced the recent starburst have also been those necessary for producing compact, bright star clusters. We examine resolved stars in the outer parts of the two super star clusters. Cluster A is dominated by bright blue stars with a small population of red supergiants. Sub-components A1 and A2 have similar colors and a two-dimensional color map does not offer evidence that one component is dominated by red supergiants and the other not. The contradiction of the presence of red super- giants with Wolf-Rayet stars may instead not be a contradiction at all since there coexistence in a coeval population is not inconsistent with the evolution of massive stars. Cluster B is dominated by red supergiants, and this is confirmed by the presence of the stellar CO absorption feature in an integrated spectrum. The various age indicators are consistent with a picture in which cluster B is of order 10--20 Myrs old, and cluster A is >4-5 Myrs old.Comment: To be published in AJ, November 200

    Untangling Source-To-Sink Geochemical Signals in a ~3.5 Ga Martian Lake: Sedimentology and Geochemistry of the Murray Formation

    Get PDF
    Sedimentary rocks are historical archives of planetary surface processes; their grains, textures, and chemistry integrate the effects of source terrains, paleoclimatic conditions, weathering and transport processes, authigenic mineral precipitation, and diagenesis, which records groundwater chemistry through time. Source to Sink basin analysis seeks to constrain the influence of each of these different signals through sedimentary and geochemical analyses. Here, we use Mars Science Laboratory (MSL) Curiosity rover images and geochemical and mineralogical data from a traverse across a portion of the Murray formationthe lowermost unit exposed in the Gale crater central moundto begin to constrain the aspects of the source to sink system that formed this Martian mudstone between 3.7 and 3.2 Ga
    • …
    corecore