15,339 research outputs found

    A semi-analytical light curve model and its application to type IIP supernovae

    Get PDF
    The aim of this work is to present a semi-analytical light curve modeling code which can be used for estimating physical properties of core collapse supernovae (SNe) in a quick and efficient way. To verify our code we fit light curves of Type II SNe and compare our best parameter estimates to those from hydrodynamical calculations. For this analysis we use the quasi-bolometric light curves of five different Type IIP supernovae. In each case we get appropriate results for the initial pre-supernova parameters. We conclude that this semi-analytical light curve model is useful to get approximate physical properties of Type II SNe without using time-consuming numerical hydrodynamic simulations.Comment: accepted for publication in Astronomy \& Astrophysics; corrected Fig.2, 3,

    LABORATORY FOR FLANKIKG SOUND TRANSMISSION OF LIGHTWEIGHT CONSTRUCTIONS

    Get PDF

    Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    Get PDF
    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure

    CALCULATION OF THE MOLECULAR STRUCTURE OF ANILINE DERIVATIVES

    Get PDF

    Passive thermoelectric power monitoring for material characterisation

    Get PDF
    Monitoring deterioration of material properties is important for assessing the structural integrity of engineering components, as it may indicate susceptibility to damage. This article focusses on the example of thermoelectric power measurements, which are known to be indicative of thermal and irradiation embrittlement and may therefore act as a proxy metric for material integrity. A passive thermoelectric power–monitoring technique is proposed which is suitable for permanent installation on engineering components. In passive measurements, the active perturbation (in this case, the heating required to create a temperature gradient) is replaced by incidental perturbation from the environment. The reduction in the ‘signal’ amplitude associated with relying on incidental perturbations may be compensated by increasing the number of individual measurements, facilitated by the greatly reduced power demand of the passive modality. Experimental studies using a stainless steel tube as a test component demonstrate thermoelectric power accuracy of <0.03 μV/°C is achievable with temperature gradients of the order of 2°C; in many cases of practical importance, this is sufficient to track the anticipated changes in thermoelectric power associated with thermal degradation

    Simulation and Evaluation of CTP and Secure-CTP Protocols

    Get PDF
    The paper discusses characteristics and qualities of two routing protocols – Collection Tree Protocol and its secure modification. The original protocol, as well as other protocols for wireless sensors, solves only problems of ra- dio communication and limited resources. Our design of the secure protocol tries to solve also the essential security ob- jectives. For the evaluation of properties of our protocol in large networks, a TOSSIM simulator was used. Our effort was to show the influence of the modification of the routing protocol to its behavior and quality of routing trees. We have proved that adding security into protocol design does not necessarily mean higher demands for data transfer, power consumption or worse protocol efficiency. In the paper, we manifest that security in the protocol may be achieved with low cost and may offer similar performance as the original protocol

    QUANTUMCHEMICAL CALCULATIONS ON (C6H5)Si(CH3)3 BY VARIOUS METHODS

    Get PDF
    corecore