69 research outputs found

    Aeroacoustic and flow assessments of the poro-serrated trailing edges

    Get PDF
    This paper reports an aeroacoustic study of a NACA0012 aerofoil with a nonflat plate type serrated trailing edge, and a number of Poro-Serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated sawtooth. Free field noise measurements were performed inside an aeroacoustic wind tunnel facility, where the range of jet speeds was between 20 ms-1 and 60 ms-1. Flow measurements were also conducted in the same facility for the very near wake. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. The results demonstrate that having low flow resistivity at the sawtooth gaps could not completely suppress the vortex shedding tone at low frequency, but it can achieve reasonably well broadband noise reduction at high frequency. With high flow resistivity at the sawtooth gaps, the denser porous material almost renders the poro-serrated trailing edge to becoming a straight trailing edge again, thus undermining the serration effect and causing a drop in the noise performance. The optimal range of flow resistivity for the poro-serrated trailing edge is found to be around 10 kN.s.m-4, where it can even perform slightly better than the conventional serrated trailing edge in terms of the turbulent broadband noise reduction while still completely suppresses the vortex shedding noise. From the analysis of the wake data, the overall drag force will not increase when a poro-serrated trailing edge is used.The EPSRC Impact Acceleration Account – Readiness in the United Kingdom

    Aerofoil trailing-edge noise prediction models for wind turbine applications

    No full text
    This paper proposes a modified TNO model for the prediction of aerofoil trailing-edge noise for wind turbine applications. The capabilities of the current modified model and four variants of the TNO model are analysed through a comprehensive study which includes 10 aerofoils and involves two different wind tunnels. The Reynolds numbers considered are between 1.13 and 3.41 million, and the effective angles of attack are between −2.20° and 13.58°. The merit of a model is assessed by comparing two aspects of the numerically predicted and the experimentally measured sound pressure level spectra: the sound pressure level difference between two different aerofoils at similar lift coefficients within a certain frequency range (referred to as the delta noise); and the closeness in terms of spectral magnitude and shape of the predicted and measured sound pressure level spectra. The current modified model is developed by deriving new formulations for the computation of the wall pressure fluctuation spectrum. This is achieved by using the approximate ratio of the normal Reynolds stress components for an anisotropic flow over a flat plate to estimate the vertical Reynolds stress component, and by introducing new stretching factors to take the effects of turbulent flow anisotropy into account. Compared with the four TNO model variants tested, the current modified model has strong delta noise prediction ability, and is able to predict sound pressure level spectra that are more consistent and closer to measurements for the vast majority of aerofoils and flow conditions tested in the two wind tunnels

    Enabling Workflows in GridSolve: Request Sequencing and Service Trading

    Get PDF
    International audienceGridSolve employs a RPC-based client-agent-server model for solving computational problems. There are two deficiencies associated with GridSolve when a computational problem essentially forms a workflow consisting of a sequence of tasks with data dependencies between them. First, intermediate results are always passed through the client, resulting in unnecessary data transport. Second, since the execution of each individual task is a separate RPC session, it is difficult to enable any potential parallelism among tasks. This paper presents a request sequencing technique that addresses these deficiencies and enables workflow executions. Building on the request sequencing work, one way to generate workflows is by taking higher level service requests and decomposing them into a sequence of simpler service requests using a technique called service trading. A service trading component is added to GridSolve to take advantage of the new dynamic request sequencing. The features described here include automatic DAG construction and data dependency analysis, direct interserver data transfer, parallel task execution capabilities, and a service trading component

    On the Easy Use of Scientific Computing Services for Large Scale Linear Algebra and Parallel Decision Making with the P-Grade Portal

    Get PDF
    International audienceScientific research is becoming increasingly dependent on the large-scale analysis of data using distributed computing infrastructures (Grid, cloud, GPU, etc.). Scientific computing (Petitet et al. 1999) aims at constructing mathematical models and numerical solution techniques for solving problems arising in science and engineering. In this paper, we describe the services of an integrated portal based on the P-Grade (Parallel Grid Run-time and Application Development Environment) portal (http://www.p-grade.hu) that enables the solution of large-scale linear systems of equations using direct solvers, makes easier the use of parallel block iterative algorithm and provides an interface for parallel decision making algorithms. The ultimate goal is to develop a single sign on integrated multi-service environment providing an easy access to different kind of mathematical calculations and algorithms to be performed on hybrid distributed computing infrastructures combining the benefits of large clusters, Grid or cloud, when needed

    Fluctuation conductivity in superconductors in strong electric fields

    Full text link
    We study the effect of a strong electric field on the fluctuation conductivity within the time-dependent Ginzburg-Landau theory for the case of arbitrary dimension. Our results are based on the analytical derivation of the velocity distribution law for the fluctuation Cooper pairs, from the Boltzmann equation. Special attention is drawn to the case of small nonlinearity of conductivity, which can be investigated experimentally. We obtain a general relation between the nonlinear conductivity and the temperature derivative of the linear Aslamazov-Larkin conductivity, applicable to any superconductor. For the important case of layered superconductors we derive an analogous relation between the small nonlinear correction for the conductivity and the fluctuational magnetoconductivity. On the basis of these relations we provide new experimental methods for determining both the lifetime constant of metastable Cooper pairs above T_c and the coherence length. A systematic investigation of the 3rd harmonic of the electric field generated by a harmonic current can serve as an alternative method for the examination of the metastable Cooper-pair relaxation time.Comment: 18 pages, REVTeX, submitted to Phys. Rev.

    Local Electronic Structure of a Single Magnetic Impurity in a Superconductor

    Full text link
    The electronic structure near a single classical magnetic impurity in a superconductor is determined using a fully self-consistent Koster-Slater algorithm. Localized excited states are found within the energy gap which are half electron and half hole. Within a jellium model we find the new result that the spatial structure of the positive-frequency (electron-like) spectral weight (or local density of states), can differ strongly from that of the negative frequency (hole-like) spectral weight. The effect of the impurity on the continuum states above the energy gap is calculated with good spectral resolution for the first time. This is also the first three-dimensional self-consistent calculation for a strong magnetic impurity potential.Comment: 13 pages, RevTex, change in heuristic picture, no change in numerical result

    Local Electronic Structure of Defects in Superconductors

    Full text link
    The electronic structure near defects (such as impurities) in superconductors is explored using a new, fully self-consistent technique. This technique exploits the short-range nature of the impurity potential and the induced change in the superconducting order parameter to calculate features in the electronic structure down to the atomic scale with unprecedented spectral resolution. Magnetic and non-magnetic static impurity potentials are considered, as well as local alterations in the pairing interaction. Extensions to strong-coupling superconductors and superconductors with anisotropic order parameters are formulated.Comment: RevTex source, 20 pages including 22 figures in text with eps

    The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors

    Full text link
    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed "current-loop" (CL) model that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely-related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several new experiments to explore of flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field, and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to Phys. Rev. B. Higher resolution figures may be obtained by contacting the author

    African Rice (Oryza glaberrima Steud.): Lost Crop of the Enslaved Africans Discovered in Suriname1

    Get PDF
    African Rice (Oryza glaberrimaSteud.): Lost Crop of the Enslaved Africans Discovered in Suriname. African rice (Oryza glaberrima Steud.) was introduced to the Americas during the slave trade years and grown by enslaved Africans for decades before mechanical milling devices facilitated the shift towards Asian rice (O. sativa L.). Literature suggests that African rice is still grown in Guyana and French Guiana, but the most recent herbarium voucher dates from 1938. In this paper, evidence is presented that O. glaberrima is still grown by Saramaccan Maroons both for food and ritual uses. Saramaccan informants claim their forefathers collected their first “black rice” from a mysterious wild rice swamp and cultivated these seeds afterwards. Unmilled spikelets (grains with their husk still attached) are sold in small quantities for ancestor offerings, and even exported to the Netherlands to be used by Maroon immigrants. Little is known of the evolution of O. glaberrima, before and after domestication. Therefore, more research is needed on the different varieties of rice and other “lost crops” grown by these descendants of enslaved Africans who escaped from plantations in the 17th and 18th centuries and maintained much of their African cultural heritage in the deep rainforest
    • 

    corecore