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Enabling workflows in GridSolve: request sequencing

and service trading

Yinan Li ·Asim YarKhan · Jack Dongarra ·

Keith Seymour ·Aurèlie Hurault

Abstract GridSolve employs a RPC-based client-agent-server model for solving

computational problems. There are two deficiencies associated with GridSolve when

a computational problem essentially forms a workflow consisting of a sequence of

tasks with data dependencies between them. First, intermediate results are always

passed through the client, resulting in unnecessary data transport. Second, since the

execution of each individual task is a separate RPC session, it is difficult to enable

any potential parallelism among tasks. This paper presents a request sequencing tech-

nique that addresses these deficiencies and enables workflow executions. Building on

the request sequencing work, one way to generate workflows is by taking higher level

service requests and decomposing them into a sequence of simpler service requests

using a technique called service trading. A service trading component is added to

GridSolve to take advantage of the new dynamic request sequencing. The features

described here include automatic DAG construction and data dependency analysis,

direct interserver data transfer, parallel task execution capabilities, and a service trad-

ing component.
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1 Introduction

GridSolve [8] employs a brokered-RPC client-agent-server model for handling com-

putational problems in a distributed computing or grid environment (Fig. 1). A com-

plete RPC session in GridSolve consists of two stages. In the first stage, the client

sends a request for a remote service to the agent, which returns a list of capable

servers ordered by some measure of their capability. The actual remote service call

takes place in the second stage. The client sends input data to a selected server; the

server handles the request and returns the result back to the client.

This request-reply RPC model forms a star topology of requests and replies with

the client at the center, since all data traffic must involve the client. The is efficient for

solving computational problems consisting of a single task. However, when a com-

putational problem forms a workflow consisting of a set of service requests with data

dependencies, this model is highly inefficient due to two deficiencies. First, interme-

diate results are passed among tasks via the client, resulting in additional, unneces-

sary data traffic between the client and the servers. Second, since the execution of

each individual task is a separate RPC session, it is difficult to exploit the potential

parallelism among tasks.

Fig. 1 The standard RPC-based computation model of GridSolve



For example, consider the following sequence of GridRPC calls:

grpc_call("func1", ivec, ovec1, ovec2, n);

grpc_call("func2", ovec1,n);

grpc_call("func3", ovec2, n);

grpc_call("func4", ovec1, ovec2, ovec, n);

In this example, the outputs of func1, namely ovec1 and ovec2, are returned back

to the client and immediately sent from the client to the servers running func2 and

func3, resulting in two unnecessary data movements. Figure 2 illustrates the data

flow for the above calls. This example demonstrates that when data dependencies

exists among tasks, it may be unnecessary to transfer intermediate results back to the

client, since such results will be needed immediately by the subsequent tasks.

To eliminate unnecessary data traffic involving the client, GridSolve has incor-

porated and enhanced a technique called request sequencing. An earlier version of

GridSolve implemented a much simpler version of request sequencing [2, 13] which

avoided unnecessary data transfers back to the client, but forced all the requests in-

volved in the sequence to run on a single server and ignored any potential parallelism

in the tasks. The current work improves on the older request sequencing techniques

by exposing and exploiting parallelism in the tasks.

The objective of this work is to provide a technique for users to efficiently solve

computational problems in GridSolve by constructing workflow applications that

consist of a set of tasks, among which there exist data dependencies.

In GridSolve request sequencing, a request is defined as a single GridRPC call to

an available GridSolve service. GridRPC [15] is a standardized API that describes a

Remote Procedure Call (RPC) interface in a Grid computing environment. The terms

request, service request, and task are used interchangeably in this paper. For each

workflow application, the set of requests is scanned, and the data dependency between

each pair of requests is analyzed. The output of this analysis is a DAG representing

the workflow. The workflow scheduler then schedules the DAG to run on the available

servers. A set of tasks can potentially be executed concurrently if the DAG permits

it. In Sect. 2, the details of request sequencing are presented.

In order to eliminate unnecessary data transport when tasks are run on multiple

servers, the standard RPC-based computational model of GridSolve must be extended

Fig. 2 An example of the

standard data flow in GridSolve



Fig. 3 The data flow in Fig. 2

with direct interserver data

transfer

to support direct data transfer among servers. Figure 3 illustrates the alternative data

flow of Fig. 2, with direct data transfer among servers. Supporting direct inter-server

data transfer requires server-side data storage. A server may have already received

some input arguments and stored them to the local storage, while waiting for the

additional arguments. In addition, a server may store its outputs to the local storage

in order to later transfer them to the servers that need them. In Sect. 3, we present

a method of using special data files as data storage. Section 4 discusses approach to

scheduling the workflow on the available resources, and Sect. 5 presents the request

sequencing API in GridSolve.

Building on the request sequencing work, one possible way to generate workflows

is by taking higher level service requests and decomposing them into a sequence of

simpler service requests using a technique called service trading. Section 6 presents

some of the ideas involved in service trading, though a detailed presentation of service

trading in GridSolve is available separately [10].

2 Workflow modeling and automatic dependency analysis

2.1 Data dependencies and directed acyclic graphs

In GridSolve request sequencing, the workflow is represented by a DAG. Each node

in the DAG represents a request (task), and each edge represents the data dependency

between requests. Consider our usual example of GridRPC requests, which have var-

ious input (ivec) and output (ovec) data items.

grpc_submit("return_int_vector",ivec,n,ovec);

grpc_submit("vpass_int", ovec, n);

grpc_submit("iqsort", ovec, n);

grpc_submit("int_vector_add5",n,ovec,ovec2);

The dependencies between the requests are implicit in the definition of the data items

(input, output, inout) and in the sequential order that the requests are submitted. Given

a set of GridRPC calls, we identify four types of data dependencies:



Fig. 4 An example DAG with

all three kinds of non-scalar data

dependencies

Input-After-Output (RAW) Dependency A service reads a data argument after a

previous service writes that data argument. The actual data involved in the depen-

dency will be transferred directly between servers, without the client being involved.

Output-After-Input (WAR) Dependency One service writes an data argument af-

ter a previous service reads that data argument. The write cannot proceed until the

read completes. This is sometimes also called a false dependency, since it can be

eliminated by creating copies of the data. However, we do not attempt to eliminate

false dependencies at this time.

Output-After-Output (WAW) Dependency This represents the case where two re-

quests in the sequence write the same output argument. The output of the request

that is depended on will not be transferred back to the client since the shared data

will be overwritten shortly by the depending request.

Conservative-Scalar Dependency This type of scalar data dependency occurs in

the conservative sequencing mode that will be introduced shortly.

If all these dependencies are maintained, then the sequential program order will be

preserved. The first three types of dependencies apply to nonscalar arguments such

as vectors and matrices. Figure 4 gives an example DAG with all types of nonscalar

data dependencies (RAW, WAR, and WAW). For scalar arguments, it is much more

difficult, and even impossible to determine if two scalar arguments are actually refer-

encing the same data, since in GridSolve scalar data can be passed by value as well

as by reference. Our solution is to provide users with several modes that use different

approaches for analyzing data dependencies among scalar arguments. The supported

modes are as follows:

Optimistic Mode In this mode, scalar arguments are ignored when analyzing data

dependencies.

Conservative Mode In this mode, two successive requests with one having an input

scalar argument and the other having an output scalar argument, are viewed as hav-

ing a conservative-scalar dependency, if these two scalar arguments have the same

data type.

Restrictive Mode In this mode, scalar arguments are restricted to be passed by ref-

erence, and data dependencies among scalar arguments are analyzed as usual.



Fig. 5 The example DAG in

Fig. 4 with an additional scalar

data dependency

Figure 5 depicts what it looks like in Fig. 4 with one conservative scalar dependency.

2.2 Automatic dependency analysis and DAG construction

In GridSolve, nonscalar arguments are always passed by reference. In addition, each

argument has some attributes associated with it specified in the service description.

These attributes describe the data type of the argument (integer, float, double, etc.),

the object type of the argument (scalar, vector, or matrix), and the input/output spec-

ification of the argument (IN, OUT, or INOUT). These attributes, along with the data

reference, can be used to determine if two arguments refer to the same data item. The

pseudocode of the algorithm for automatic DAG construction and dependency analy-

sis is presented in Algorithm 1. Notice that in the algorithm, each node is assigned a

rank, which is an integer representing the scheduling priority of this node. The algo-

rithm for workflow scheduling and execution uses this rank information to schedule

nodes to run. The algorithm for workflow scheduling and execution is presented in

Sect. 4.

As an example, considering the following workflow (this workflow is programmed

using the API functions that will be introduced in Sect. 5):

grpc_sequence_begin(OPTIMISTIC_MODE);

grpc_submit("return_int_vector",ivec,n,ovec);

grpc_submit("vpass_int", ovec, n);

grpc_submit("iqsort", ovec, n);

grpc_submit("int_vector_add5",n,ovec,ovec2);

grpc_sequence_end(0);

The DAG produced by the above algorithm (Fig. 6) may contain redundant edges

from the perspective of both execution and data traffic. For example, in Fig. 6, the

RAW dependency between return_int_vector and int_vector_add5 is

redundant, since the input argument ovec of int_vector_add5 will come from

iqsort instead of return_int_vector. Removing this redundant edge will

affect neither the execution order nor the effective data flow of the DAG. The final

step in building and analyzing the DAG is to remove all such redundant dependencies.

Figure 7 shows the DAG in Fig. 6 after all redundant edges are removed.



Algorithm 1 The algorithm for automatic DAG construction and dependency analy-

sis
1: Scan the set of tasks, and create a DAG node for each task;

2: Let NodeList denote the list of nodes in the DAG;

3: Let N denote the number of nodes in the DAG;

4: for i = 1 to N − 1 do

5: Let P denote node NodeList[i], and PArgList denote the argument list of node

P;

6: for j = i + 1 to N do

7: Let C denote node NodeList[j ], and CArgList denote the argument list of

node C;

8: for each argument PArg in PArgList do

9: for each argument CArg in CArgList do

10: if Parg and CArg have identical references then

11: if PArg.inout = (INOUT OR OUT) AND CArg.inout = (IN OR

INOUT) then

12: Insert a RAW dependency RAW(P , C);

13: else if PArg.inout = IN AND CArg.inout = (INOUT OR OUT)

then

14: Insert a WAR dependency WAR(P , C);

15: else if PArg.inout = (INOUT OR OUT) AND CArg.inout = OUT

then

16: Insert a WAW dependency WAW(P , C);

17: end if

18: end if

19: end for

20: end for

21: Assign the appropriate rank to node C;

22: end for

23: Assign the appropriate rank to node P ;

24: end for

3 Interserver direct data transfer

One approach to interserver data transfer via a Grid file system called Gfarm was

introduced in [17]. This is similar to the Distributed Storage Infrastructure (DSI) im-

plementation [3] in GridSolve. In GridSolve, DSI is mainly used for building exter-

nal data repositories to provide large chunks of input data and output storage to tasks

running on servers. Both approaches use external libraries that must be installed and

configured prior to use.

In this paper, we describe our approach to direct interserver data transfer via file

staging. File staging is a service in GridSolve that moves files between two servers.

Our approach uses file staging as a medium of transferring intermediate data between

two servers. Specifically, intermediate results are first saved as data files, and are then

staged to the target servers, on which they are restored by the tasks depending on



Fig. 6 An example DAG before

redundant edges are removed

Fig. 7 The example DAG in

Fig. 6 after all the redundant

edges are removed

them. This approach not only eliminates unnecessary data transport, it also protects

the system from losing data, since data can be easily retrieved from locally saved

files. In our approach, servers that need an intermediate result “pull” the that data

from the servers that produce it. It is therefore necessary for the server that needs

an intermediate result to know which server produces it. Our solution is to have the

server that produces the intermediate result send a data handle via the client to the

servers that need the result. A data handle is a small data structure that describes

various aspects of an argument in GridSolve, including object type, data type, stor-

age pattern, task name, server name, data size, file name, and file path. The “pull”

approach to data-movement was used because it allows a more dynamic approach to

scheduling.

In GridSolve request sequencing, data handles are used as virtual pointers to in-

termediate results stored in special data files. Data handles are passed between two

servers via the client. The recipient of a data handle, the server that needs the data

referenced in the data handle, asks for the intermediate data by sending a request to

the server that stores the data. Upon receiving the request, the server that stores the



intermediate data sends it directly to the requester via file staging, without the client

being involved.

4 Workflow scheduling and execution

As mentioned in Sect. 2, after the dependency analysis, a DAG is built for a work-

flow and each node in the DAG is assigned an integer representing the rank of that

node. The rank of a node indicates the scheduling priority of the node. The client will

schedule and execute a workflow based on the rank of each node. Specifically, nodes

with the same rank are independent of each other and can be scheduled to run simul-

taneously. Initially, the client will schedule the nodes with the highest rank (rank 0) to

start executing. Notice that all the input arguments for such nodes should be available

at the time of execution. The client will schedule the remaining nodes to run if and

only if both the following two conditions are satisfied: (1) all the input arguments are

available, and (2) all the dependencies involving the node are resolved.

A dependency is resolved if the parent node in the DAG has finished its execu-

tion. A resolved dependency is removed from the DAG. The algorithm for workflow

scheduling and execution is shown in Algorithm 2. The client executes the algorithm

and acts as the manager of DAG execution. The algorithm uses level-based clustering

to group nodes that can be scheduled to run simultaneously. Nodes with the same

rank are viewed as on the same scheduling level, and are clustered and scheduled to

run simultaneously. Notice that the routine AssignRequestToServers assigns

the nodes on the current scheduling level to the available servers. The assignment of

requests to the available servers is critical to the overall performance of the execution

of a DAG. In our current implementation, we use a simple round-robin strategy to

assign tasks on a specific level onto the available servers.

The above round-robin scheduling algorithm is primitive and probably will be

highly inefficient when the workflow is complex. A major deficiency of the algo-

rithm is that it does not take into consideration the differences among tasks and does

not really consider the mutual impact between task clustering and network commu-

nication. In addition, sometimes it will be helpful for reducing the total execution

Algorithm 2 The algorithm for workflow scheduling and execution

1: Let N denote the total number of nodes in the workflow to be scheduled;

2: LetM denote the number of requests that have been scheduled;

3: M = N = 0; CurrentSchedRank = 0;

4: repeat

5: NodeList = NodeWithRank(CurrentSchedRank);

6: K = NumNodes(NodeList);

7: AssignRequestsToServers(NodeList);

8: ExecuteNodes(NodeList);

9: WaitUntilFinished(NodeList);

10: CurrentSchedRank = CurrentSchedRank + 1;

11: M = M + K ;

12: until M = N
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Table 1 GridSolve request sequencing API

Function prototypes

gs_sequence_begin(int mode)

gs_submit(char*, ...)

gs_submit_arg_stack(char* service, arg_stack* args)

gs_sequence_end(int)

time if some tasks on a specific scheduling level are scheduled to run before other

tasks on the same level. The algorithm, however, does not support this kind of out-of-

order execution of tasks on the same scheduling level. This primitive algorithm will

be replaced by a more advanced one in our future work.

5 GridSolve request sequencing API

One important design goal of GridSolve request sequencing is to ease the pro-

gramming of workflow applications by providing users with a small set of API

functions, presented in Table 1. During the execution of the client code after

gs_sequence_begin is called, GridSolve collects each service request submit-

ted via gs_submit commands and creates a dependency-based DAG from those

requests. It is during the dependency analysis stage that the dependency mode is

used to determine scalar dependencies. Once gs_sequence_end is called, and no

other services requests will be added to the DAG, then the DAG is scheduled and

executed.

The current API does not support advanced workflow patterns such as conditional

branches and loops. We are planning to investigate such advanced workflow patterns

in the future to make GridSolve request sequencing a more powerful technique for

workflow programming.

6 Generating workflows via intelligent service trading

We have defined an API for submitting a sequence of service requests to GridSolve so

that a workflow DAG can be automatically inferred from the sequence of GridSolve

requests. The DAG can be executed using GridSolve so that it preserves the sequen-

tial semantics of the original sequence of service requests, reduces data movement

requirements, and allows potential parallelism to be exploited.

However, the users still needs to know about the services that are currently avail-

able, and to choose the appropriate sequence of services that will satisfy the users

overall goal. In recent work, we have turned our attention to considering techniques

for the generation of a workflow from a higher level description of a problem. Many

complex problems can be handled by the combination of different sets of available

services. The process of service trading [9] searches for the appropriate sequence of

services to satisfy the complex problem at hand.

A service trading framework has been incorporated into the GridSolve middleware

system on an experimental basis [10]. A complex problem request is described within



the system using a higher-level mathematical description. The services provided by

GridSolve are described using similar mathematical descriptions. For example, ma-

trix addition (saxpy) and multiplication (sgemm) can be described using this algebraic

specification as:

Matrix x, y : daxy(x, y) = x + y

Scalar α,β,Matrix x, y, z : dgemm(α, x, y,β, z) = α ∗ x ∗ y + β ∗ z

When a request for a higher-level problem is received, the service trader component

examines the available services and uses equational unification to search for and com-

pose a sequence of available services that satisfy the complex higher-level request.

This sequence of related service requests is then executed as a distributed workflow

using the request sequencing API in GridSolve. Please see [10] for details about the

integration of service trading into GridSolve.

As a demonstration of the capabilities of the combination of GridSolve with ser-

vice trading, a set of linear algebra services (e.g., level 3 BLAS and LAPACK) have

been enhanced with algebraic descriptions in order to support service trading. How-

ever, the ideas behind service trading are generalizable, so any complex process that

can be described with the appropriate algebraic description can be incorporated in

this framework.

The ease-of-use of this approach is demonstrated from the Matlab client interface

supported by GridSolve:

a = [1,2,3;4,5,6;7,8,9]

b = [10,20,30;40,50,60;70,80,90]

[output] = gs_call_service_trader("(a+(b*a))"),

output =

301 362 423

664 815 966

1027 1268 1509

The service trader analyzes the input data items and their operations, discovers avail-

able services that could be composed to satisfy these operations (e.g., daxpy, dgemm),

tries multiple methods of composing these services, selects an appropriate sequence

of services, and submits the services requests via the GridSolve request sequencing

API. Please see [9] for more information about the equational matching used in in-

telligent service trading.

Using the service trader with GridSolve makes the users service requests more

efficient by the following two factors. First, the service trader evaluates the computa-

tional cost of the various service choices for the users specific data in order to choose

more efficient services. Second, the request sequencing API enables the parallelism

in the sequence of requests. There is a cost to the analysis performed by the service

trader, but we expect to minimize this cost in future work.

The major advantages provided by the combined framework are ease-of-use and

transparency. The end user does not have to be knowledgeable in grid computing,

mathematical libraries, algorithmic complexity, data dependency analysis, parallel

asynchronous execution, fault-tolerance, or any of the details that are transparently



handled by this system. The framework provides fault tolerance at various levels of

failure. If a single service fails, it is transparently retried; if all copies of a service

have failed, the trader can formulate the complex request as different combination of

services. The user need not be aware of the exact composition of services that satisfies

the request.

7 Applications and experiments

This section presents experiments using GridSolve request sequencing to build prac-

tical workflow applications. The first application is to implement Strassen’s algorithm

for matrix multiplication. As shown below, Strassen’s algorithm works in a layered

fashion, and there are data dependencies between adjacent layers. Thus, it is natural

to represent Strassen’s algorithm as a workflow using GridSolve request sequencing.

The second application is to build a Montage [4, 11] workflow for creating

science-grade mosaics of astronomical images. Montage is a portable toolkit for con-

structing custom science-grade mosaics by composing multiple astronomical images.

7.1 Experiments with Strassen’s algorithm

This subsection discusses a series of experiments with the implementation of

Strassen’s algorithm using GridSolve request sequencing. The servers used in the

experiments are Linux boxes with Dual Intel Pentium 4 EM64T 3.4 GHz proces-

sors and 2.0 GB memory. The client, the agent, and the servers are all connected via

100 Mb/s Ethernet.

7.1.1 Implementation

Strassen’s algorithm is a fast divide-and-conquer algorithm for matrix multiplication.

The computational complexity of this algorithm is O(n2.81), which is better than the

O(n3) complexity of the classic implementation. Strassen’s algorithm is recursive

and works in a block, layered fashion, as shown by Table 2. Table 2 illustrates the

outline of a single level recursion of the algorithm [16].

As shown in Table 2, Strassen’s algorithm is organized in a layered fashion, and

there are data dependencies between adjacent layers. Thus, it is natural to represent

a single level recursion of the algorithm as a workflow and construct the algorithm

using GridSolve request sequencing. It can be seen that on each layer, tasks can be

performed fully in parallel, since there is no data dependency among tasks on the

same layer. For instance, the seven submatrix multiplications (Q1 to Q7) can each be

executed by a separate process running on a separate server.

7.1.2 Results and analysis

Figure 8 plots the execution time as a function of N (matrix size) of Strassen’s algo-

rithm on a single server, both with and without interserver data transfer. This figure

demonstrates the advantage of eliminating unnecessary data traffic when a single



Table 2 The outline of a single

level recursion of Strassen’s

algorithm

T1 = A11 + A22 T2 = A21 + A22

T3 = A11 + A12 T4 = A21 − A11

T5 = A12 − A22 T6 = B11 + B22

T7 = B12 − B22 T8 = B21 − B11

T9 = B11 + B12 T10 = B21 + B22

Q1 = T1 × T6 Q2 = T2 × B11

Q3 = A11 × T7 Q4 = A22 × T8

Q5 = T3 × B22 Q6 = T4 × T9

Q7 = T5 × T10

C11 = Q1 + Q4 − Q5 + Q7 C12 = Q3 + Q5

C21 = Q2 + Q4 C22 = Q1 − Q2 + Q3 + Q6

Fig. 8 The execution time of

Strassen’s algorithm as a

function of N on a single server,

both with and without

interserver data transfer

server is used. It can be seen in the figure that the computational performance with

direct interserver data transfer is consistently better than that without the feature. This

figure shows the case that only one server is used. In this case, intermediate results

are passed between tasks locally within the single server when direct inter-server data

transfer is enabled. When multiple servers are used, intermediate results are trans-

ferred directly among servers. Considering that servers are typically connected using

high-speed interconnections, the elimination of unnecessary data traffic will still be

helpful in boosting the performance in the case that multiple servers are used. Fig-

ure 9 plots the execution time as a function of N of Strassen’s algorithm on 4 servers,

both with and without interserver data transfer. The same conclusion that eliminating

unnecessary data transport is beneficial can be obtained as in Fig. 8.

It can be seen in Figs. 8 and 9 that parallel execution in this case is disappointingly

ineffective in improving the computational performance. This is attributed to several

important reasons. As discussed above, in the case that a single server is used, inter-

mediate results are passed between tasks locally within the single server, resulting in

no real network communication. In contrast, when multiple servers are used, some

intermediate results have to be passed among tasks running on different servers, re-

sulting in real network transfer of large chunks of data. Considering that the client,

the agent, and the servers are all connected via 100 Mb/s Ethernet, the overhead of



Fig. 9 The execution time of

Strassen’s algorithm as a

function of N on four servers,

both with and without

interserver data transfer

network traffic can be relatively large. Therefore, the effect of parallel execution in

improving the overall performance is largely offset by the overhead of additional

network traffic. In addition, the overhead within the GridSolve system further re-

duces the weight of the time purely spent on computation in the total execution time,

making it even less effective to try to reduce the computation time by parallel exe-

cution. Another important reason is that the primitive algorithm for DAG scheduling

and execution is highly inefficient for complex workflows, as discussed in Sect. 4.

The above result indicates that GridSolve request sequencing is not an appropriate

technique for implementing fine-grained parallel applications, since the overhead of

network communication and remote service invocation in GridSolve can easily offset

the performance gain of parallel execution.

7.2 Experiments with montage

Montage is program for building highly detailed mosaics of astronomical images. It

uses three steps to build a mosaic:

Reprojection of input images this step reprojects input images to a common spatial

scale and coordinate system.

Modeling of background radiation in images this step rectifies the re-projected

images to a common flux scale and background level.

Coaddition this step co-adds reprojected, background-rectified images into a final

mosaic.

Each step consists of a number of tasks that are performed by the corresponding

Montage modules. There are dependencies both between adjacent steps and among

tasks in each step.

We present a series of experiments with a simple application of the Montage

toolkit, introduced in the following subsection. Unlike Strassen’s algorithm for ma-

trix multiplication, this is essentially an image processing application and is more

coarse-grained. The servers used in the experiments are Linux boxes with Dual Intel

Pentium 4 EM64T 3.4 GHz processors and 2.0 GB memory. The client, the agent,

and the servers are all connected via 100 Mb/s Ethernet.



Fig. 10 The uncorrected

version of the mosaic

7.2.1 A simple Montage application

We use the simple Montage application introduced in “Montage Tutorial: m101 Mo-

saic” [12], which is a step-by-step tutorial on how to use the Montage toolkit to

create a mosaic of 10 2MASS [1] Atlas images. This simple application generates

both background-matched and uncorrected versions of the mosaic [12]. The step-by-

step instruction in the tutorial can be easily converted to a simple workflow, which is

illustrated by the left graph in Fig. 12. The rest of this section refers to this workflow

as the naive workflow. The detailed description of each Montage module used in the

application and the workflow can be found in the documentation section of [11].

The output of the naive workflow, both the uncorrected and background-matched

versions of the mosaic, are given in Figs. 10 and 11, respectively. It can be seen that

the background-matched version of the mosaic has a much better quality than the

uncorrected version.

7.2.2 Parallelization of image reprojection

The execution time of the naive workflow on a single server is approximately 90 to

95 seconds, as shown below. The most time-consuming operation in the naive work-

flow is mProjExec, which is a batch operation that reprojects a set of images to

a common spatial scale and coordinate system, by calling mProjectPP for each

image internally. mProjectPP performs a plane-to-plane projection on the single

input image, and outputs the result as another image. It is obvious that the calls to

mProjectPP are serialized in mProjExec. Thus, an obvious way to improve the

performance of the naive workflow is replacing the single mProjExec operation

with a set of independent mProjectPP operations and parallelize the execution of



Fig. 11 The background-

matched version of the mosaic

Fig. 12 The naive (top) and

modified (bottom) workflows

built for the simple Montage

application. In each workflow,

the left branch generates the

uncorrected version of the

mosaic, whereas the right

branch generates the

background-matched version of

the mosaic. Both branches are

highlighted by the wrapping

boxes

these independent image re-projection operations. The workflow with this modifica-

tion is illustrated by the right graph in Fig. 12. The rest of this section refers to this

workflow as the modified workflow.



Fig. 13 The execution time

(sorted) on a single server of the

best 10 of 20 runs of both the

naive and modified workflows

Fig. 14 The execution time

(sorted) of the best 10 of 20 runs

of the left branch of the

modified workflow on different

numbers of servers (1, 2, and 3)

7.2.3 Results and analysis

Figure 13 shows the execution time (sorted) on a single server of the best 10 of 20 runs

of both the naive and modified workflows. It can be seen that the performance of the

modified workflow is significantly better than that of the naive workflow. The reason

is that the single server has two processors as mentioned above and, therefore, can

execute two mProjectPP operations simultaneously. This result demonstrates the

benefit of parallelizing the time-consuming image re-projection operation by replac-

ing the single mProjExec with a set of independent mProjectPP operations. It

is still interesting to see whether using more than one server can further speed up the

execution. This is investigated by the following experiment. The next experiment is

based on a smaller workflow, which is the left branch of the modified workflow, i.e.,

the smaller branch that produces the uncorrected version of the mosaic. The reason

for using a smaller workflow is that we want to minimize the influence of the fluctuat-

ing execution time of the right branch on the overall execution time. The expectation

that using more than one server can further speed up the execution is demonstrated

by Fig. 14. The figure shows the execution time (sorted) of the best 10 out of 20 runs



of the left branch of the modified workflow on different numbers of servers (1, 2,

and 3). It is not surprising to see in the figure that the performance is better as more

servers are used to increase the degree of parallelization.

8 Related work

There is much research in the area of workflow management on grid resources; one

taxonomy of relevant projects can be found in [18]. Many of these projects have

represented workflows explicitly; for example, explicit textual representations (e.g.,

Condor DAGMan [7], connected web services (e.g., Taverna [14] GUI environment),

and parameterized task graphs (e.g., communication patterns between task nodes [6]).

In our work, we have chosen to emphasize ease-of-use, and use automatic depen-

dency analysis to implicitly construct the workflow from a sequence of service re-

quests. This has led to certain difficulties in detecting the use of scalar variables,

however, we believe that the ease of use cancels the difficulties.

SmartGridSolve [5] is a project that has very similar goals with respect to work-

flow processing in GridSolve. It is an extension to GridSolve that provides workflow

processing for grid environments by enabling the collective mapping of a group of

tasks to a fully connected network topology. SmartGridSOlve reduces communica-

tion volume by enabling direct data transfer between GridRPC servers, and it bal-

ances computation and communication loads among the servers. Language specific

features (i.e., C macros) are used to do two passes over the service requests; during

the first pass the structure of the workflow is determined; during the second pass the

service requests are scheduled and executed . This two-pass approach makes it dif-

ficult to extend the SmartGridSolve interface to additional client interfaces such as

Fortran, Matlab, and Octave, since those client languages may not provide the equiv-

alent of C macros. Our implementation provides a smoother interface to additional

GridSolve client bindings.

9 Conclusions and future work

GridSolve request sequencing is a technique developed for users to build workflow

applications for efficient problem solving in GridSolve. GridSolve request sequenc-

ing completely eliminates unnecessary data transfer during the execution of tasks. In

addition, it is capable of exploiting the potential parallelism among tasks in a work-

flow. The experiments discussed in the paper promisingly demonstrate the benefit of

eliminating unnecessary data transfer taking advantage of the potential parallelism.

An important feature of GridSolve request sequencing is that the analysis of depen-

dencies among tasks in a workflow is fully automated; users are not required to man-

ually specify the dependencies among tasks in a workflow. These features plus the

easy-to-use API make GridSolve request sequencing a powerful tool for building

workflow applications for efficient parallel problem solving in GridSolve.

The service trading component integrated on top of the GridSolve request se-

quencing infrastructure provides additional advantages to a user in terms of ease-

of-use and transparency. The combination of request sequencing and service trading



provides fault tolerance at various levels of failure. If a single service fails, it is trans-

parently retried by GridSolve; if all copies of a service have failed, the trader can

formulate the complex request as different combination of services. The user need

not be aware of the exact composition of services that satisfies the request.

In future work, the request sequencing scheduler will be improved to make more

intelligent resource management decisions rather than using the simple level based

scheduler. The service trader will be optimized to reduce the associated with gener-

ating DAGs from complex service requests.

A integrating theme in GridSolve research is ease-of-use and our goal in this work

is to make GridSolve an easy-to-use yet powerful tool to enable an end user to write

workflow programs. The user should not have to be knowledgeable in grid computing,

mathematical libraries, algorithmic complexity, data dependency analysis, parallel

asynchronous exaltation, fault-tolerance, or any of the details that are transparently

handled by this system.
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