20 research outputs found

    Saturation magnetostriction and its low-temperature variation inferred for natural titanomaghemites: implications for internal stress control of coercivity in oceanic basalts

    Get PDF
    Highly oxidized titanomaghemite in oceanic basalts often carries remanent magnetization of high coercivity (stability), helping preserve the oceanic magnetic anomaly pattern. We study the source of this high coercivity in four oceanic basalts (from ODP sites 238, 572D, 470A and 556) containing highly oxidized titanomaghemite (titanium content parameter x ≈ 0.55 and oxidation parameter z ≈ 0.9 on average). Most of the titanomaghemite is likely in singledomain grains with uniaxial anisotropy because the ratio of saturation remanence J RS to saturation magnetization Js approaches 0.50 (JRS/JS = 0.46 on average). We show that the uniaxial anisotropy is very likely magnetostrictively controlled through internal stresses σi in the titanomaghemite grains. This allows us to use a novel indirect method to estimate the saturation magnetostriction λS of the titanomaghemite. A saturation remanence J RS is given along the axis of a cylindrical sample of each basalt. Then a small compression σ is applied repeatedly along this axis and the reversible change ∆JRS in JRS is measured. Combining equations from single-domain theory for this piezomagnetic effect and for the sample’s coercive force HC gives λS = 1.39HCJS 1/σ ∆JRS/JRS (using cgs units, or with HC in mT, J S in kA m and σ in Pa). This yields four λS estimates (with ca 50 per cent expected error) ranging from 3 × 10−6 to 10 × 10−6 and averaging 6 × 10−6. Theory for the piezomagnetic effect yields four σ i estimates averaging 2 × 108 Pa. This is similar to the internal stress magnitude thought to be responsible for the high coercivity of ball-milled single-domain titanomagnetite (x ≈ 0.6) and natural single-domain haematite. We also show that cooling to 120 ◦K causes HC J S for each oceanic basalt to vary in approximate proportion to (1− T TC)n with n between 1.9 and 2.0 (where T is temperature and T C is Curie point, both in ◦K). This implies that λS of titanomaghemite with x ≈ 0.55 and z ≈ 0.9 also varies in approximate proportion to (1− T TC)n with n near 1.9 or 2.0 on cooling to 120 ◦K (assuming that σ i remains constant on cooling). Our results support the hypothesis that coercivity (magnetic stability) is often magnetostrictively controlled by internal stresses in the highly oxidized titanomaghemites typical of oceanic basalts older than ca 10 Myr.We suggest that this hypothesis can be further tested by more extensive observation of whether cooling to 120 ◦K often causes HC J S of such basalts to vary in approximate proportion to (1 − T TC)n with n near 1.9 or 2.0

    Limestones of western Newfoundland that magnetized before Devonian folding but after Middle Ordovician lithification

    Get PDF
    A positive fold test and a negative conglomerate test help determine when and how stable remanence was acquired in the Middle Ordovician Table Head Group limestones of the Port au Port Peninsula of Newfoundland. The limestones magnetized after lithification and incorporation as clasts into a Middle Ordovician breccia. Hence, the limestones do not carry a detrital or other primary remanence despite their very low conodont colour alteration index of 1. The remanence may be thermoviscous or diagenetic and was acquired before Devonian folding. This suggests the need for caution in interpreting paleomagnetic results from other early Paleozoic limestones whose remanence resides in magnetite of blocking temperature lower than 400°C

    Paleomagnetic study of the late Neoproterozoic Bull Arm and Crown Hill formations (Musgravetown Group) of eastern Newfoundland: implications for Avalonia and West Gondwana paleogeography

    No full text
    A paleomagnetic study of subaerial volcanic rocks and associated siltstones of the Ediacaran Bull Arm Formation in the Avalon Zone of Newfoundland revealed a stable bipolar, hematite-borne primary remanence supported by positive conglomerate, contact, and fold tests. Mean remanence directions in two distal areas (Bonavista and Argentia) are similar, indicating a low paleolatitude position of Avalonia at ~570 Ma. Redbeds of the overlying ~550 Ma Crown Hill Formation also carry a primary bipolar hematite-borne remanence with moderate inclination, indicating that Avalonia remained at low to medium paleolatitudes through the end of the Ediacaran. Combining our results with previously published paleomagnetic data of Avalonia suggests moderate-scale drift of Avalonia through low southern paleolatitudes through the latter half of the Ediacaran, providing a paleogeographic context for the development of the first complex metazoan life
    corecore