4,390 research outputs found

    The Effect of Combined Magnetic Geometries on Thermally Driven Winds I: Interaction of Dipolar and Quadrupolar Fields

    Get PDF
    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest order fields such as the dipole, quadrupole and octupole modes. Magnetised stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex, but singular, magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed field, along with 10 of each pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases are well described by a broken power law behaviour, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilising the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For Solar parameters, the lowest order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.Comment: 15 pages + 9 figures (main), 3 pages + 1 figure (appendix), accepted for publication to Ap

    Lasing in Strong Coupling

    Full text link
    An almost ideal thresholdless laser can be realized in the strong-coupling regime of light-matter interaction, with Poissonian fluctuations of the field at all pumping powers and all intensities of the field. This ideal scenario is thwarted by quantum nonlinearities when crossing from the linear to the stimulated emission regime, resulting in a universal jump in the second order coherence, which measurement could however be used to establish a standard of lasing in strong coupling.Comment: 5 pages, 2 figure

    The Effect of Magnetic Variability on Stellar Angular Momentum Loss II: The Sun, 61 Cygni A, ϵ\epsilon Eridani, ξ\xi Bootis A and τ\tau Bootis A

    Get PDF
    The magnetic fields of low-mass stars are observed to be variable on decadal timescales, ranging in behaviour from cyclic to stochastic. The changing strength and geometry of the magnetic field should modify the efficiency of angular momentum loss by stellar winds, but this has not been well quantified. In Finley et al. (2018) we investigated the variability of the Sun, and calculated the time-varying angular momentum loss rate in the solar wind. In this work, we focus on four low-mass stars that have all had their surface magnetic fields mapped for multiple epochs. Using mass loss rates determined from astrospheric Lyman-α\alpha absorption, in conjunction with scaling relations from the MHD simulations of Finley & Matt (2018), we calculate the torque applied to each star by their magnetised stellar winds. The variability of the braking torque can be significant. For example, the largest torque for ϵ\epsilon Eri is twice its decadal averaged value. This variation is comparable to that observed in the solar wind, when sparsely sampled. On average, the torques in our sample range from 0.5-1.5 times their average value. We compare these results to the torques of Matt et al. (2015), which use observed stellar rotation rates to infer the long-time averaged torque on stars. We find that our stellar wind torques are systematically lower than the long-time average values, by a factor of ~3-30. Stellar wind variability appears unable to resolve this discrepancy, implying that there remain some problems with observed wind parameters, stellar wind models, or the long-term evolution models, which have yet to be understood.Comment: 15 pages + 8 figures, accepted for publication to Ap

    Proper Motion of Pulsar B1800-21

    Get PDF
    We report high angular resolution, multi-epoch radio observations of the young pulsar PSR B1800-21. Using two pairs of data sets, each pair spanning approximately a ten year period, we calculate the proper motion of the pulsar. We obtain a proper motion of mu_alpha=11.6 +- 1.8 mas/yr, mu_delta=14.8 +- 2.3 mas/yr, which clearly indicates a birth position at the extreme edge of the W30 supernova remnant. Although this does not definitively rule out an association of W30 and PSR B1800-21, it does not support an association.Comment: 13 pages, 1 color figure. Replaced with version accepted for publication in Astrophysical Journa

    Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone. Volume 1: Text

    Get PDF
    The author has identified the following significant results. Image interpretation and computer-assisted techniques were developed to analyze LANDSAT scenes in support of resource inventory and monitoring requirements for the Texas coastal region. Land cover and land use maps, at a scale of 1:125,000 for the image interpretation product and 1:24,000 for the computer-assisted product, were generated covering four Texas coastal test sites. Classification schemes which parallel national systems were developed for each procedure, including 23 classes for image interpretation technique and 13 classes for the computer-assisted technique. Results indicate that LANDSAT-derived land cover and land use maps can be successfully applied to a variety of planning and management activities on the Texas coast. Computer-derived land/water maps can be used with tide gage data to assess shoreline boundaries for management purposes

    Climbing the Jaynes-Cummings ladder by photon counting

    Full text link
    We present a new method to observe direct experimental evidence of Jaynes--Cummings nonlinearities in a strongly dissipative cavity quantum electrodynamics system, where large losses compete with the strong light-matter interaction. This is a highly topical problem, particularly for quantum dots in microcavities where transitions from higher rungs of the Jaynes--Cummings ladder remain to be evidenced explicitly. We compare coherent and incoherent excitations of the system and find that resonant excitation of the detuned emitter make it possible to unambiguously evidence few photon quantum nonlinearities in currently available experimental systems.Comment: 4 pages, 4 figures (color online). Updated bb
    corecore