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Abstract

The magnetic fields of low-mass stars are observed to be variable on decadal timescales, ranging in behavior from
cyclic to stochastic. The changing strength and geometry of the magnetic field should modify the efficiency of
angular momentum loss by stellar winds, but this has not been well quantified. In Finley et al. (2018), we
investigated the variability of the Sun and calculated the time-varying angular momentum-loss rate in the solar
wind. In this work, we focus on four low-mass stars that have all had their surface magnetic fields mapped for
multiple epochs. Using mass-loss rates determined from astrospheric Lyα absorption, in conjunction with scaling
relations from the MHD simulations of Finley & Matt (2018), we calculate the torque applied to each star by their
magnetized stellar winds. The variability of the braking torque can be significant. For example, the largest torque
for ò Eri is twice its decadal averaged value. This variation is comparable to that observed in the solar wind, when
sparsely sampled. On average, the torques in our sample range from 0.5 to 1.5 times their average value. We
compare these results to the torques of Matt et al. (2015), who use observed stellar rotation rates to infer the long-
time-averaged torque on stars. We find that our stellar wind torques are systematically lower than the long-time-
averaged values, by a factor of ∼3–30. Stellar wind variability appears unable to resolve this discrepancy, implying
that there remain some problems with observed wind parameters, stellar wind models, or the long-term evolution
models, which have yet to be understood.

Key words: evolution – magnetohydrodynamics (MHD) – stars: low-mass – stars: winds, outflows – stars:
magnetic field – stars: rotation

1. Introduction

For low-mass stars like the Sun (M*1.3Me), magnetic
activity is observed to decline with stellar age (Hartmann &
Noyes 1987; Mamajek & Hillenbrand 2008). This is a consequence
of the dynamo mechanism, which is responsible for sustaining the
stellar magnetic field, and its dependence on rotation and
convection (Brun & Browning 2017). During the main sequence,
angular momentum is removed by magnetized stellar winds. This
wind braking increases the observed rotation periods of stars with
age (Skumanich 1972; Bouvier et al. 2014). The connections
between stellar rotation, magnetic activity, and wind braking
converge the rotation and activity indices of low-mass stars during
the main sequence, such that these quantities appear to follow a
mass-dependent relationship with age (Noyes et al. 1984;
Gilliland 1986; Wolff & Simon 1997; Stelzer & Neuhäuser 2001;
Pizzolato et al. 2003; Barnes 2010; Meibom et al. 2015). This
connection with age is useful in a number of ways. For example,
empirical relations can be derived in order to determine the ages of
some stars from their rotation or magnetic activity (Barnes 2003;
Mamajek & Hillenbrand 2008; Meibom et al. 2009; Delorme et al.
2011; Van Saders & Pinsonneault 2013; Vidotto et al. 2014).

The observed evolution of rotation also provides a constraint
on the torque applied to stars, independent of our understanding
of stellar winds. Models for computing the rotational evolution of
stars give us an indication of how stellar wind torques evolve on
secular (up to several gigayear) timescales (e.g., Gallet &
Bouvier 2013, 2015). These torques can then be compared to
calculations that are based on observed wind and magnetic
properties, in order to test our understanding of stellar magnetism
and winds (Amard et al. 2016; Réville et al. 2016). One caveat,
however, is that the torques derived from rotational evolution

models are only sensitive to the angular momentum losses of
stars averaged over some fraction of the spin-down timescale. For
Sun-like main sequence stars, the rotational evolution torques
thus represent a value averaged over ∼10–100Myr. Clearly, any
variability of wind and magnetic properties on timescales shorter
than this will inhibit a comparison between the long-time torque
from rotational evolution models and those calculated based on
observed present-day magnetic and wind properties.
Variability in the magnetic activity of low-mass stars is

commonly observed at short timescales, ranging from days to
years (Baliunas et al. 1995; Hall et al. 2007; Egeland et al.
2017). The magnetic fields are driven by the stellar dynamo,
whose variability can take many forms—be it in exhibiting a
cyclic magnetic field like that of the Sun (Boro Saikia et al.
2016; Jeffers et al. 2018), magnetic fields with multiple cycles
(Jeffers et al. 2014), or magnetism with apparently stochastic
behaviors (Petit et al. 2009; Morgenthaler et al. 2012). Such
variability appears to occur throughout the main sequence
lifetime of low-mass stars. It is therefore interesting to
characterize the impact this has on the stellar wind torques.
In order to quantify the impact of magnetic variability on

stellar wind braking, we first studied the solar wind in Finley
et al. (2018, hereafter Paper I), for which we have both in situ
observations of the wind plasma and remote observations of the
photospheric magnetic field. In Paper I, available data allowed
us to study the variability on timescales from one solar rotation
(∼27 days) up to a few decades. We quantified how the torque
varies on all timescales, and found that the decadal-averaged
value was smaller than the rotational evolution torque by a
factor of ∼15. Although the reason for the discrepancy is still
not clear, it could be due to gaps in our understanding of the
solar magnetism and wind, variability in the solar torque on
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timescales much longer than a decade, issues with the
rotational-evolution torques, or a combination thereof.

In the present paper, we examine the influence of observed
magnetic variability on the wind braking of four Sun-like stars,
using semi-analytic relations derived from MHD wind simula-
tions, and we compare these values to the long-time-averaged
torques derived from modeling the rotational evolution of low-
mass stars. In Section 2, we first describe the semi-analytic
wind braking formula from Finley & Matt (2017, 2018,
hereafter FM18), and the rotational evolution torque prescrip-
tion from Matt et al. (2015, hereafter M15). In Section 3, we
gather stellar properties and magnetic field observations for our
four sample stars: 61 Cyg A, ò Eri, ξ Boo A, and τ Boo A. Each
star has repeat observations using the Zeeman–Doppler
imaging (ZDI) technique, and three of them also have observed
mass-loss rates estimated from astrospheric Lyα absorption.
We also re-examine the Sun, limiting the available data to
observations ∼2 yr apart, which is more comparable to the
cadence of observations for the other stars. In Section 4, we
calculate the angular momentum-loss rates using both torque
formulas. We discuss our results in Section 5.

2. Angular Momentum-loss Prescriptions

2.1. Stellar Wind Torques from Finley & Matt (2018)

As in Paper I, we will make use of the semi-analytic formula
derived from the MHD simulations of FM18. Such formula-
tions are intended to characterize the braking torques on stars
that host convective outer envelopes. In Paper I, we used a
formulation based on the open magnetic flux in the solar wind.
Such formulae are independent of the magnetic geometry at the
stellar surface (Réville et al. 2015), but the open magnetic flux
cannot be measured for stars other than the Sun. For this work,
we instead use a formula based on the observed surface
magnetic field. Previous formulae of this kind have only been
valid for single magnetic geometries (Matt & Pudritz 2008;
Matt et al. 2012; Réville et al. 2015; Pantolmos & Matt 2017),
but the magnetic fields of low-mass stars are observed to
contain mixed magnetic geometries that vary from star to star
(e.g., See et al. 2016), as well as in time, with geometries
evolving in strength with respect to one another (e.g., DeRosa
et al. 2012, for the Sun).

The FM18 formulation is simplified, but is capable of
approximating the observed behavior of full MHD simulations
without the computational expense. The MHD simulations are
performed using axisymmetric magnetic geometries combined
with polytropic Parker-like wind solutions (Parker 1958;
Pneuman & Kopp 1971; Keppens & Goedbloed 1999), which
are relaxed to a steady state. The application of results derived
from such simulations to a time-varying problem emulates a
sequence of independent steady-state solutions. Given that the
characteristic timescales for disturbances caused by the
reorganization of the coronal magnetic field to propagate
through the solution are short with respect to the evolution of
the system, this is a valid approximation.

The torque due to a stellar wind is prescribed in terms of the
average Alfvén radius, á ñRA , which acts as an efficiency factor
for the stellar wind in extracting angular momentum (Weber &
Davis 1967; Mestel 1968). The torque, τ, is given by

* *
*
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where Ṁ is the mass-loss rate of the stellar wind, Ω* is the
stellar rotation rate (approximated as solid body rotation at the
surface), and R* is the stellar radius. In FM18, á ñRA is
parameterized in terms of the wind magnetization,
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where the total field strength is evaluated from the first three
spherical harmonic components * = + +∣ ∣ ∣ ∣ ∣ ∣B B B Bdip quad oct ,

the escape velocity is given by * *=v GM R2esc , and M* is
the stellar mass. Previous works have shown the reduced
efficiency of magnetic braking with increasingly complex
magnetic fields (Réville et al. 2015; Garraffo et al. 2016).
Furthermore, FM18 examined the behavior of mixed magnetic
geometries. They were able to show that higher-order modes
(e.g., octupole) play a diminishing role in braking stellar
rotation, when modeled in conjunction with lower-order modes
(e.g., dipole, quadrupole). For mixed geometries, FM18
showed that the average simulated Alfvén radius behaves
approximately as a broken power law of the form
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This approximates the stellar wind solutions from Finley &
Matt (2018), for their fit parameters Kdip=1.53, Kquad=1.70,
Koct=1.80, mdip=0.229, mquad=0.134, and moct=0.087.
The magnetic field geometry is input using dip, quad, and
oct, defined as the ratios of the polar strengths for each
component over the total field strength, i.e., * = ∣ ∣B Bdip dip ,
etc. We neglect modes of higher order than the octupole, as
they do not significantly contribute to the torque on the star.

2.2. Rotation Evolution Torques from Matt et al. (2015)

In this work, we will compare our results to the rotation
evolution model of M15, which uses the observed distribution
of mass versus rotation, at given ages, to find empirical torques
that reproduce these observations. To date, no single model
(including M15) precisely reproduces the observed mass-
rotation distributions, but M15 reproduces the broad depen-
dences of rotation rates on mass and age. The torque in this
model has two regimes: either unsaturated, where the stellar
Rossby number (defined as *p= W( )Ro t2 cz , where tcz is the
convective turnover time) is greater than the saturation value,

= Ro R0.1 osat , ; or saturated, where the Rossby number is
smaller. All the stars in this paper are in the unsaturated regime.
The M15 torque is given by

*
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where p is constrained by observations to ∼2 (Skumanich
1972), and τ0 provides the normalization to the torque based on
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the stellar mass and radius,

* *t = ´
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which is fit empirically from the observed rotation rates of Sun-
like stars.

For determining the convective turnover timescales, as
in M15, we adopt the fit of Cranmer & Saar (2011) to the
stellar models of Gunn et al. (1998),
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where the effective temperature, Teff, is the only variable
determining tcz. Cranmer & Saar (2011) showed this to be a
reasonable approximation that is valid for the temperature
range 3300�Teff�7000 K. Such a monotonic function of
tcz(Teff) is also supported by other works (Barnes & Kim 2010;
Landin et al. 2010).

3. Observed Stellar Properties

We select a sample from all stars that have been monitored
with ZDI, requiring that each have six or more ZDI
observations that clearly show magnetic variability. This
criterion selects four stars, as most stars that have been
observed with ZDI have only one or two epochs. Along with
our sample stars, we also consider the Sun. This section
contains information on each star, including results from ZDI,
studies of their astrospheric Lyα absorption, and proxies of
their magnetic activity. Both solar and stellar parameters can be
found in Table 1.

3.1. The Sun

The study of the Sun’s magnetism has afforded the
astrophysics community a great wealth of information on the
apparent behavior of the magnetic dynamo process (Brun et al.
2015). We observe the Sun to have a cyclic pattern in its
magnetic activity, with a sunspot cycle of around 11 yr and a
magnetic cycle lasting approximately 22 yr (Babcock 1961;
Schrijver & Liu 2008; DeRosa et al. 2012). At the minimum of
magnetic activity, the wind dynamics on large scales are
dominated by the axisymmetric dipole component and the solar
wind is, in general, fast and diffuse, emerging on open polar
field lines (Wang & Sheeley 1990; Schwenn 2006). As the
cycle progresses, the solar magnetic field becomes increasingly

complex toward maximum, with the appearance of sunspots as
buoyant magnetic flux tubes rise through the photosphere
(Parker 1955; Spruit 1981; Caligari et al. 1995; Fan 2008). Due
to the increased complexity, more of the solar wind emerges in
the slow, dense component, and transient magnetic phenomena
are more frequent (Webb & Howard 1994; Neugebauer et al.
2002; McComas et al. 2003). The average surface magnetic
field is stronger at maximum, and so too are magnetic activity
indicators and the solar irradiance (Lean et al. 1998; Wenzler
et al. 2006). Following the decline of magnetic activity into the
next minimum, the polarity of the field is reversed (Babcock
1959; Sun et al. 2015). Numerous mechanisms have been
proposed to explain this phenomenon (e.g., Fisher et al. 2000;
Ossendrijver 2003). The solar magnetic field returns to its
original polarity after one further sunspot cycle, completing the
magnetic cycle.
As was done for the Sun in Paper I, we use synoptic

magnetograms taken by the Michelson Doppler Imager on
board the Solar and Heliospheric Observatory (SOHO/MDI)
and the Helioseismic and Magnetic Imager on board the Solar
Dynamic Observatory (SDO/HMI). We calculate the average
surface magnetic field strength Bmean, the combined polar
dipole, quadrupole and octupole field strength B*, and the field
fractions dip, quad, and oct. Unlike Paper I, in order to
better compare the solar case with other stars, and to illustrate
the effect of sparse time sampling, we take only 13 Carrington
rotations, equally spaced over the ∼20 yr of data. This
information is plotted in the top two panels of Figure 1 and
tabulated in Appendix A.
The first panel of Figure 1 compares the average surface

magnetic field, Bmean, which is often used when discussing
results from ZDI, to the combined polar field strength of the
lowest three spherical harmonic components, B*, which is
required by the FM18 torque formulation. Typically, B* is
larger than Bmean, because it sums the absolute magnitude of
the polar field strengths, whereas Bmean allows for opposing
field polarities to cancel and is averaged over the stellar surface.
Sparsely sampling the solar magnetograms has made the

well-known cyclic behavior of the large-scale magnetic field
less obvious, especially when considering B*. However, the
cycle is more clear in the second panel, where we plot the
fraction of B* in the dipole, quadrupole, and octupole
components. We illustratively recover the magnetic behavior
of the Sun by fitting sinusoids of B*,dip,quad, andoct with
a fixed 11 yr period, and allowing the phase and amplitude of
each fit to vary. These illustrations are shown in Figure 1, and
will be repeated for the ZDI sample in Section 3.3 to produce
feasible distributions of magnetic properties for each star,

Table 1
Stellar Parameters

Star Mass Radius Teff tcz Rot. Period Rossby Cyc. Period Ṁ
Name ( )M (Re) (K) (days) (days) Number (yr) ( Ṁ )

Sun 1.00 1.00 5780 12.7 28 2.20 11 1
61 Cyg A 0.66 0.67 4310 34.5 35.5 1.03 7.3 0.5
ò Eri 0.86 0.74 4990 24.0 11.7 0.49 3.0 30
ξ Boo A 0.93 0.86 5410 18.3 6.4 0.35 7.5a 5
τ Boo A 1.34 1.42 6460 1.88 3.0 1.60 0.3 ∼150b

Notes.
a Fit from this work.
b Average mass-loss rate from the MHD simulations of Nicholson et al. (2016).

3

The Astrophysical Journal, 876:44 (14pp), 2019 May 1 Finley, See, & Matt



allowing us to further examine the role of magnetic variability
on stellar wind torques.

3.2. Other Stars

Four stars observed with ZDI meet our criteria for selection:
61 Cyg A, ò Eri, ξ Boo A, and τ Boo A. Their basic properties
are compiled in Table 1. Masses are determined using the
stellar evolution model of Takeda et al. (2007). If available,
radii are evaluated with interferometry by Kervella et al.
(2008), Baines & Armstrong (2011), or Boyajian et al. (2013);
otherwise, they are evaluated spectroscopically by Borsa et al.
(2015). Effective temperatures are taken from Boeche & Grebel
(2016), and then used in conjunction with Equation (7) to
produce convective turnover timescales. Rotation periods for
each star are determined by Boro Saikia et al. (2016), Rüedi
et al. (1997), Toner & Gray (1988), Donahue et al. (1996),
Donati et al. (2008), and Fares et al. (2009), respectively. These
are then used to calculate the Rossby number =R P to rot cz for
each object. Further details for each star are listed below.

61 Cyg A (HD 201091) is a K5V star, located 3.5 pc away
(Brown et al. 2016) in the constellation of Cygnus as a visual
binary with 61 Cyg B, a K7V star. Age estimations for 61 Cyg
A range from 1.3 to 6.0 Gyr, with the majority of estimates at
the younger end of this range: 2 Gyr (Barnes 2007), 3.6 Gyr

(Mamajek & Hillenbrand 2008), 6 Gyr (Kervella et al. 2008),
and 1.3 Gyr (Marsden et al. 2014). Cyclic chromospheric/
coronal activity is detected in many forms, including X-ray
emission (Robrade et al. 2012), with a period in phase with its
magnetic activity cycle (Baliunas et al. 1995; Boro Saikia et al.
2016, 2018).
ò Eri (HD 22049) is a K2V star in the constellation of

Eridanus, at a distance of 3.2 pc (Brown et al. 2016). ò Eri is a
young star with multiple age estimations (e.g., Song et al. 2000;
Fuhrmann 2004). From gyrochronology, Barnes (2007) arrives
at an age of 400Myr, which is thought to be the most reliable
(see discussion in Janson et al. (2008)). Chromospheric activity
has been recorded for ò Eri by Metcalfe et al. (2013). It displays
an activity cycle length of ∼3 yr, as well as a longer one of
∼13 yr that vanished after a 7 yr minimum in activity
around 1995.
ξ Boo A (HD 131156A), a spectral-type G7V, lies in the

constellation of Boötes, 6.7 pc away (Brown et al. 2016), in a
visual binary with ξ Boo B of spectral type K5V. The age of ξ
Boo A is determined from gyrochronology by Barnes (2007) as
200Myr. Variations in ξ Boo A’s chromospheric activity have
been noted by multiple authors (Hartmann et al. 1979; Gray
et al. 1996; Morgenthaler et al. 2012), but no clear cycle has
been detected.
τ Boo A (HD 120136) is a very well-studied planet-hosting

F7V star, sitting at a distance of 15.7 pc (Brown et al. 2016) in
a multiple star system with τ Boo B, a faint M2V companion. τ
Boo A has an age of around 1 Gyr (Borsa et al. 2015), and has
an observed chromospheric activity cycle (Mengel et al. 2016;
Mittag et al. 2017) that is in phase with the reversals of its
global magnetic field (Jeffers et al. 2018). This is also the case
for the Sun and 61 Cyg A. As τ Boo A has a close-in planetary
companion, Walker et al. (2008) searched for star–planet
interactions and found that the planet is likely inducing an
active region on the stellar surface, causing further variability
in the star’s chromospheric emission.

3.3. Zeeman–Doppler Imaged Fields

61 Cyg A (Boro Saikia et al. 2016), ò Eri (Jeffers et al.
2014, 2017), ξ Boo A (Morgenthaler et al. 2012), and τ Boo A
(Fares et al. 2009; Mengel et al. 2016; Jeffers et al. 2018) have
all been monitored with ZDI. This is a tomographic technique
that is capable of reconstructing their large-scale photospheric
magnetic fields (Donati et al. 1989; Semel 1989; Brown et al.
1991; Donati & Brown 1997; Donati & Landstreet 2009).
Magnetic fields cause spectral lines to split and become
polarized due to the Zeeman effect (Zeeman 1897). By
monitoring this splitting over multiple phases, taking advantage
of the Doppler shifts due to rotation, and combining multiple
line profiles together using a Least Squares Deconvolution
(LSD) technique (Donati et al. 1997), the large-scale stellar
magnetic field topology can be reconstructed.
Papers reporting ZDI results typically tabulate the fraction of

the total magnetic field energy that is poloidal (Epol) and the
fraction of this poloidal field energy that is dipolar,
quadrupolar, or octupolar (Edip, Equad, and Eoct), as well as
the average surface field (Bmean). For the maps of Fares et al.
(2009) and Mengel et al. (2016), we compute the values using
data supplied by the authors; these values are not tabulated in
the original papers. Using MHD stellar wind models, Jardine
et al. (2013) were able to show that large-scale wind dynamics
are largely unaffected by toroidal magnetic field structures

Figure 1. Angular momentum-loss calculation for the solar wind (the Sun-as-a-
star approach). The top two panels show the magnetic field properties of the
Sun using synoptic magnetograms from SOHO/MDI and SDO/HMI. Dots
represent sparsely sampled epochs of observation. The first panel shows the
evolution of the magnetic field strength at the surface of the Sun. The second
panel shows the ratio of dipole, quadrupole, and octupole components to the
combined (dipole, quadrupole, and octupole) magnetic field strength. The third
panel displays the mass-loss rate measurements derived from the ACE
spacecraft (see Paper I) in blue, with the the selected epochs shown with black
dots (left scale), along with the evolution of solar S-index from Egeland et al.
(2017) indicated by gray dots (right scale). We fit sinusoids to the magnetic and
mass-loss rate variables with a fixed 11 yr period, which roughly represents the
solar chromospheric activity cycle. Black dots in the fourth panel indicate the
calculated torques for each magnetogram epoch using FM18. The torque using
our continuous sinusoidal fits is plotted as a solid gray line, and its average is
highlighted by a solid orange horizontal line. The torque calculated using M15
is indicated by a dashed orange horizontal line.
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embedded in the photosphere. Therefore, we assume the
toroidal component does not impact our torque calculations.
We convert the percentage energies into the poloidal dipole,
quadrupole, and octupole field fractions, as well as combined
field strength,

= ( )f E E , 8dip pol dip

= ( )f E E , 9quad pol quad

= ( )f E E , 10oct pol oct

* = + +( ) ( )B B f f f . 11mean dip quad oct

Here, care has been taken in transforming fractional energy into
fractional field strengths for each magnetic component.
Subsequently, the field fractions, f f,dip quad, and foct are
converted into the ratios of each magnetic component to the
combined field strength, l,
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These results are shown in the top two panels in each of
Figures 2–5, and tabulated in Table 2 for each ZDI epoch.
Calculating the ratios of each field component using this
method, rather than recomputing the field strengths of each
component from the original ZDI maps, introduces some errors
that will be discussed in Section 5.1.
In each of Figures 2–5, the first panel displays the recorded

mean magnetic field from the ZDI reconstructions, Bmean, with
gray dots. The black dots represent the combined polar field
strength of the dipole, quadrupole, and octupole components,
B*. Typically, the B* value is larger than Bmean, unless a
significant fraction of the magnetic energy is stored in the
toroidal or high-order (l>3) components. The second panels
show the varying field fractions, dip, quad, and oct.
Although multiple magnetic maps exist for each of our ZDI

stars, they are still sampled relatively sparsely, compared to the
Sun. To examine their variability further, we fit sinusoidal
functions to B*, dip, quad, and oct, as we did for the Sun,
using chromospheric activity periods taken from the literature
for each star (see Table 1). We allow the phase and amplitude
of each fit to vary, but we constrain the fits of dip, quad, and
oct to sum to ∼1. In some cases, there is no strong evidence
for periodicity—and even if so, a sinusoidal behavior is a gross
simplification. We do this simply to illustratively construct
continuous predictions for feasible cyclic behaviors, from
which we can make more general comments about the impact
of stellar cycles on stellar wind torques.

3.4. Inferred Mass-loss Rates and Activity Proxies

The solar mass-loss rate is observed to be variable in time
(Hick & Jackson 1994; Webb & Howard 1994; McComas et al.
2000, 2013). In the third panel of Figure 1, we use blue dots to
plot the solar mass-loss rate calculated in Paper I, based on data

Figure 2. Angular momentum-loss calculation for 61 Cyg A. The top two
panels show the magnetic field properties taken from the ZDI measurements of
Boro Saikia et al. (2016). The first panel shows the evolution of the average
unsigned magnetic field strength and the combined (dipole, quadrupole, and
octupole) magnetic field strength, at the surface of the star. The second panel
shows the ratios of dipole, quadrupole, and octupole components of the
magnetic field to the combined magnetic field strength. We fit sinusoids to
these properties with a fixed period of 7.3 yr, matching the chromospheric
activity cycle. The third panel displays the mass-loss rate measurement of
Wood & Linsky (1998) as a black dot, along with the S-index evolution of the
chromospheric activity as gray dots (Boro Saikia et al. 2016). A sinusoidal
mass-loss rate with a solar-like amplitude, as well as phase and period matching
the observed chromospheric activity, is shown as a solid black line. Black dots
in the fourth panel display the calculated torques for each ZDI epoch
using FM18. A solid gray line plots the torque using our continuous sinusoidal
fits; its average is highlighted by a solid orange horizontal line. The torque
calculated using M15 is indicated with a dashed orange horizontal line.

Figure 3. Same as Figure 2, but for ò Eri.
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from the Advanced Composition Explorer1, and we highlight
our selected magnetogram epochs with black dots. During the
solar cycle, the mass-loss rate from Paper I is found to vary
around the mean by about ±30%.2 We fit the function,

p
f= á ñ + +⎜ ⎟
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⎛
⎝

⎞
⎠

⎤
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0.3 sin

2
1 , 15

to the 13 selected magnetogram epochs. Here, t is the decimal
year (1985–2020 are plotted), the mass-loss rate variation is
constrained toD = á ñ˙ ˙M M0.6 , and the period is fixed as that of
the chromospheric activity period, P=11 yr. The fit values of
the phase, f, and the average mass-loss rate, á ñṀ , are ∼π/6 and
1.03×1012 g s−1, respectively. This fit is displayed as a solid
black line in the third panel.

For nearby stars, Lyα observations can reveal information
about their stellar winds (Wood 2004). Absorption in this line
occurs at the edge of the star’s astrosphere, as well as at the Sun’s
heliosphere. At these locations, the solar and stellar winds collide
with the ISM and become shocked, reaching temperatures and
densities much greater than the average ISM. Based on their
models of this absorption, estimated mass-loss rates are available
from Wood & Linsky (1998) and Wood et al. (2002, 2005) for 61
Cyg A, ò Eri, and ξ Boo A. There are no measurements of the
mass-loss rate for τ Boo A, so instead we use the results of MHD
simulations from Nicholson et al. (2016). The mass-loss rate used
for each star is shown in Table 1.

For the ZDI stars, the mass-loss rates gathered from Lyα
observations are taken at a single epoch. These are plotted as
black dots in the third panel of Figures 2–4. However, we
might expect the mass-loss rates of these stars to vary with their
magnetic activity, similarly to the Sun. Currently, there are no
observations in the literature capable of quantifying this
variability, so we must draw comparisons with the Sun.

Increased emission in Ca II H&K is thought to correlate directly
with the deposition of magnetic energy into the stellar chromo-
sphere (Eberhard & Schwarzschild 1913; Noyes et al. 1984; Testa
et al. 2015). This is observed for the Sun (Schrijver et al. 1989)
and can be correlated with the mass-loss rate of the solar wind.
Overplotted with the mass-loss rates in Figure 1, we show the
solar S-index values from Egeland et al. (2017). The S-index
evaluates the flux in the H and K lines and normalizes it to the
nearby continuum (Wilson 1978). Both the solar mass-loss rate
and the sinusoidal fit to our selected epochs appear roughly in
phase with this measure of chromospheric activity. The slight lag
between mass-loss rate and magnetic activity is not surprising, as
a similar lag is observed in the rate of coronal mass ejections
(Ramesh 2010; Webb & Howard 2012) and open magnetic flux in
the solar wind (Wang et al. 2000; Owens et al. 2011). The Ca II
H&K lines are now regularly monitored for hundreds of stars
(Wilson 1978; Baliunas et al. 1995; Hall et al. 2007; Egeland et al.
2017). Using gray dots, we plot the available S-index measure-
ments for each star in the third panel of Figures 2–5. The temporal
coverage differs from star to star, with ξ Boo A having only the
Ca II H band index,3 taken concurrently with the ZDI
observations (Morgenthaler et al. 2012).
Similarly to the Sun, we represent the mass-loss variation for

each star using a sinusoidal function,

p
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with the phase, f, and period, P, matching the variation of their
Ca II H&K emission. We use chromospheric activity periods from

Figure 4. Same as Figure 2, but for ξ Boo A. Figure 5. Same as Figure 2, but for τ Boo A. Mass-loss rate and torque panels
(3 and 4) include values (blue squares) from the MHD simulations of τ Boo A
from Nicholson et al. (2016). A phase-folded version of this plot is available in
Appendix B.

1 http://srl.caltech.edu/ACE/ASC/level2/
2 In calculating this variation, we ignore extreme values that are seen in time
averages shorter than a few months.

3 As both the H and K lines scale together, only information about one is
required.
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the existing literature (see Table 1), and show the available Ca II
H&K indices in Figures 2–4. Although a correlation between
mass-loss rate and Ca II H&K emission seems to exist for the Sun
(visible in Figure 1), the correlation is complex; it is not obvious
whether a similar relationship exists for other stars. If we were to
use the correlation for the Sun to estimate the mass-loss rate
variation of our sample stars, given their variability in Ca II H&K
emission, i.e., D µ DṀ Sindex, we would find a range of
amplitudes aroundD = á ñ˙ – ˙M M0.01 1.5 . Given the uncertainties,
we simply adopt the same amplitude for the mass-loss rate as was
determined for the Sun (D = á ñ˙ ˙M M0.6 ), and require the function
to reproduce the astropheric Lyα observations (i.e., =˙ ( )M tobs

Ṁobs). The solid black line in each figure represents this projected

variability. Note that, because the torque is a relatively weak
function of mass-loss rate (see Equations (1)–(3)), our assumption
about the amplitude of variability in mass-loss rate has a similarly
weak effect on the amplitude of variability in the torque.

4. Angular Momentum-loss Rates

Here, we apply the FM18 braking law to our sample stars to
calculate their stellar wind torques. We also calculate the
rotational evolution torques from M15.

4.1. Predicted Alfvén Radii

Through the application of FM18 to our sample stars, we are
able to examine their individual locations in our MHD

Table 2
Magnetic Properties from ZDI and Angular Momentum-loss Results

Star ZDI Obs B* dip quad oct *á ñR RA tFM18 tspinev τspinev Reference
Name Epoch (G) *ºB Bdip *ºB Bquad *ºB Boct (×1030 erg) (×1030 erg) tá ñFM18 (ZDI Data)

61 Cyg A 2007.59 17.5 0.58 0.27 0.15 11.8 0.29 5.25 26.25 1
2008.64 4.7 0.46 0.37 0.17 5.5 0.08 L L 1
2010.55 7.3 0.28 0.29 0.43 5.1 0.09 L L 1
2013.61 13.1 0.61 0.27 0.12 10.9 0.22 L L 1
2014.61 11.6 0.59 0.28 0.13 9.9 0.20 L L 1
2015.54 15.6 0.65 0.25 0.10 11.4 0.32 L L 1

òEri 2007.08 15.0 0.74 0.19 0.08 4.7 13.4 114 11.41 2
2007.09 15.1 0.51 0.31 0.18 4.0 9.8 L L 2
2010.04 17.1 0.36 0.37 0.27 3.5 8.2 L L 2
2011.81 13.0 0.53 0.26 0.21 4.2 6.8 L L 2
2012.82 20.3 0.55 0.26 0.19 4.7 14.0 L L 2
2013.75 24.6 0.66 0.16 0.18 5.6 19.1 L L 2
2014.71 11.1 0.43 0.33 0.24 3.6 4.8 L L 3
2014.84 11.6 0.53 0.23 0.24 4.0 6.2 L L 3
2014.98 13.7 0.54 0.27 0.19 4.2 7.6 L L 3

ξ Boo A 2007.56 42.8 0.56 0.24 0.20 11.0 29.1 748 32.4 4
2008.09 32.3 0.45 0.27 0.27 8.5 20.0 L L 4
2009.46 42.4 0.42 0.29 0.29 8.8 27.3 L L 4
2010.04 24.1 0.48 0.27 0.25 7.9 14.8 L L 4
2010.48 37.8 0.53 0.27 0.20 9.8 26.6 L L 4
2010.59 24.5 0.47 0.29 0.24 7.4 16.8 L L 4
2011.07 26.5 0.60 0.26 0.14 8.1 27.0 L L 4

τ Boo A 2008.04 2.2 0.33 0.33 0.35 2.1 108 367 2.72 5
2008.54 1.8 0.33 0.33 0.34 2.0 141 L L 5
2008.62 1.8 0.32 0.36 0.32 2.0 133 L L 5
2009.5 2.5 0.39 0.33 0.28 2.1 156 L L 5
2010.04 3.0 0.35 0.35 0.30 2.2 109 L L 6
2011.04 2.7 0.48 0.23 0.28 2.1 127 L L 6
2011.45 2.5 0.22 0.38 0.40 2.1 163 L L 6
2013.45 3.1 0.34 0.34 0.32 2.2 142 L L 6
2013.96 3.8 0.41 0.39 0.20 2.2 170 L L 6
2014.45 2.5 0.34 0.31 0.35 2.1 108 L L 6
2015.04 2.9 0.35 0.31 0.34 2.2 146 L L 6
2015.29 1.6 0.59 0.24 0.17 1.9 141 L L 6
2015.33 1.3 0.58 0.26 0.16 1.8 123 L L 6
2015.35 1.6 0.58 0.24 0.18 1.9 123 L L 6
2015.38 2.4 0.45 0.28 0.27 2.1 124 L L 6
2016.21 3.2 0.49 0.27 0.24 2.2 166 L L 7
2016.44 2.1 0.29 0.33 0.38 2.1 97 L L 7
2016.47 3.0 0.44 0.25 0.31 2.2 124 L L 7
2016.54 2.7 0.42 0.29 0.29 2.1 160 L L 7

References. (1) Boro Saikia et al. (2016); (2) Jeffers et al. (2014); (3) Jeffers et al. (2017); (4) Morgenthaler et al. (2012); (5) Fares et al. (2009); (6) Mengel et al.
(2016); (7) Jeffers et al. (2018).
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parameter space. Figure 6 displays the location of each ZDI
epoch and sinusoidal model in á ñ - ¡RA space. Uncertainties
in the recovered field strengths from ZDI are difficult to
quantify. Typically, errors quoted in ZDI papers are obtained
by varying the input parameters to reconstruct additional ZDI
maps, from which the variation in field strengths are quoted as
error (see the discussion in Petit et al. (2008)). We propagate
typical uncertainties for the magnetic field strength (±30%) and
the mass-loss rates (±50%), respectively, using standard error
analysis. The resulting uncertainty in wind magnetization, ϒ,
and the average Alfvén radius, á ñRA , are correlated, as we show
with diagonal gray lines in Figure 6. Vertical lines represent a
±10% uncertainty on our prediction of á ñRA , which considers
the approximations made in fitting Equation (3). This is
discussed further in FM18 (see their Figure 10).

The wind magnetization parameterizes the effectiveness of
the wind braking, or more physically, the size of the torque-
averaged Alfvén radius. However, Equation (3) also encodes
information about the magnetic geometry of the field,
approximating this effect as a twice-broken power law.
Depending on the strength of the three magnetic geometries
considered here, the dipolar, quadrupolar, or octupolar (top,
middle, or bottom) formula in Equation (3) will be used to
calculate á ñRA . To identify when each formula is used, different
symbols are plotted in Figure 6.

The average Alfvén radii of our sample stars range from

*~ R2 to 11 ; most are typically dipole-dominated, with the
exception of τ Boo A. The predicted á ñRA values for τ Boo A
follow a shallower slope than the other dipolar-dominated stars,
due to the weaker dependence of the octupolar geometry (as
compared to the dipole or quadrupole geometries) on wind
magnetization in Equation (3). The MHD model results of
Nicholson et al. (2016) for the á ñRA of τ Boo A are also plotted
with light blue squares in Figure 6. Their values for á ñRA are
shown to be in good agreement with results from the FM18
braking law.

The Sun appears typical when compared with the three
dipole-dominated stars; some have larger á ñRA and others have
smaller. However, the Sun shows some quadrupolar-dominated
behavior around solar maximum, which is not observed in the
other dipole-dominated stars. Each sinusoidal model roughly
represents the observed epochs from ZDI, and they are able to
show how subsampling may skew our perception of where
each star lies in this parameter space. A similar representation
of the solar cycle in this parameter space was explored in the
work of Pinto et al. (2011) (see Figure 11 within). We find
(though we do not depict it here) that the sinusoidal prediction
for the location of the Sun in this parameter space is
representative of using the full data set examined in Paper I.

4.2. Torques

4.2.1. The Sun as a Star

In Paper I, we produced an estimate for the solar angular
momentum-loss rate using the wealth of observations available for
our closest star. Here, we instead treat the Sun as a star by
reducing the number of observations to intervals of approximately
2 yr, thus illustrating the effect of sparse time sampling. Details on
the selected magnetogram epochs are tabulated in Appendix A.
Figure 1 shows the result of our angular momentum-loss

calculation. For the Sun, the dipole and octupole geometries are
shown to cycle in phase, with the quadrupole out of phase, as
previously discussed in DeRosa et al. (2012). The S-index values
from Egeland et al. (2017) appear in phase with the quadrupolar
geometry and the mass-loss rates taken from Paper I. The torques
for each epoch using FM18 are plotted with black dots in the
bottom panel. A gray line indicates the torque using the sinusoidal
fits of the magnetic field and mass-loss rate.
From Figure 1, it is clear that simple sinusoids with fixed

amplitude and phase are a poor fit to the data. This is primarily
due to variation from cycle to cycle, i.e., the length of the Sun’s
magnetic cycle is know to vary, along with the strength of each

Figure 6. Average Alfvén radius vs. wind magnetization, ϒ. Results for the Sun are shown in black. The ZDI epochs for 61 Cyg A (orange), ò Eri (teal), ξ Boo A
(brown), and τ Boo A (magenta) are displayed with their uncertainties, in gray. The shape of each point signifies the magnetic geometry governing the angular
momentum-loss rate according to Equation (3): dipolar-dominated with circles, quadrupolar-dominated with diamonds, and octupolar-dominated with stars. The
sinusoidal models are shown with a corresponding colored line. Colored squares mark the average of both quantities for each star. The majority of ZDI epochs and
solar magnetograms are dominated by the dipolar component—with the exception of τ Boo A, which hosts a weakly magnetized wind (according to the predictions of
Ṁ of Nicholson et al. 2016) and so is dominated by the octupolar term in Equation (3). Results from the 3D MHD simulations of τ Boo A from Nicholson et al. (2016)
are displayed using blue squares, in good agreement with this work.
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cycle (e.g., Solanki et al. 2002). However, the poor fit is also
representative of the effects of sparse sampling on a system that
contains variability on much shorter timescales than consid-
ered. Therefore, when considering the magnetic behavior of
other stars, we expect not to see clear cyclical behaviors, even
if the stars are truly cyclical, like we know the Sun to be.

We calculate the average torque for the solar magnetogram
epochs to be 0.37×1030 erg, which is in close agreement with
the estimate produced in Paper I. The sinusoidal fits produce an
average torque of 0.30×1030 erg. The model torque has a
different phase, with respect to the solar magnetic cycle, than
using the full data set in Paper I, which is a consequence
of fitting to sparsely sampled data. The torque given by M15 is
6.2×1030 erg. The discrepancy between these torques is
discussed in Section 4.3.

4.2.2. 61 Cygni A

61 Cyg A was observed with ZDI by Boro Saikia et al. (2016)
from 2007.59 to 2015.54, with an average of 1.19 yr between
observations. They find the star to be very much like the Sun in its
magnetic behavior: both the poloidal and toroidal field components
reverse polarity in phase with its chromospheric activity, and it
displays a weak, solar-like differential rotation profile. Like the
Sunʼs, this global field is strongly dipolar: the dipole component
strengthens at activity minimum, but weakens at activity maximum
in favor of more multipolar field geometries.

Figures 2 and 6 display the full results of our angular
momentum-loss calculation. Block dots in the bottom panel of
Figure 2 plot the values of the torque calculated for the
individual ZDI epochs using the projected mass-loss rates.
The sinusoidal model torque is plotted with a solid gray line.
The dipole component is strong, with activity minima in 2007
and 2014, so we predict a large average Alfvén radius ( *~ R10 ;
see Figure 6). At the activity maximum around 2010, the field
is at its most complex. However, the magnetic braking is still
dominated by the dipolar component, due to the relative
strengths of the other modes. This produces the smallest
average Alfvén radius ( *~ R5 ).

The average torque for the ZDI epochs of 61 Cyg A,
using FM18, is 0.20×1030 erg. The average of the sinusoidal
model has a similar value of 0.18×1030 erg. The torque
from M15 is calculated to be 5.25×1030 erg.

4.2.3. ò Eridani

ò Eri was observed with ZDI by Jeffers et al. (2014) from
2007.08 to 2014.98. Jeffers et al. (2014) originally monitored ò
Eri with an average of 1.11 yr between observations until
2013.75. Jeffers et al. (2017) followed up these observations
taking three observations in quick succession (approximately
once a month) during its activity minimum. The magnetic
geometry of ò Eri at minimum activity is more complicated
than the axisymmetric dipolar structure seen from the Sun and
61 Cyg A. The dipole component instead strengthens at activity
maxima, producing the largest Alfvén radii when the chromo-
spheric activity is highest. Figure 3 details the angular
momentum-loss calculation for ò Eri, and the average Alfvén
radii are displayed in Figure 6.

The ZDI epochs of ò Eri, using FM18, have an average
torque of 1.00×1031 erg. With the sinusoidal fits, we find a
larger average value of 1.24×1031 erg. The sinusoidal model
suggests that the ZDI epochs have preferentially sampled

minima of activity, and therefore average to a lower torque. We
calculate the torque using M15 and find a value of
1.14×1032 erg.

4.2.4. ξ Bootis A

The magnetic variability of ξ Boo A is unlike both 61 Cyg A
and ò Eri. It was observed with ZDI by Morgenthaler et al.
(2012) from 2007.59 to 2011.07, with an average time between
observations of half a year. The star hosts a persistent toroidal
component with fixed polarity through all observations. This
field contains a large fraction of the magnetic energy, shown by
the mean field strength (gray dots) in the top panel of Figure 4
being much larger than the combined magnetic field strength
(black dots). The total magnetic field appears to have short time
variability. However, the second panel in Figure 4 appears to
show a coherent pattern. With the limited data available, and no
cyclic variability detected in other activity indicators, we fit a
sinusoid to this slowly varying magnetic geometry.
Note that the data are best-represented with maxima

occurring where there are no data. The existence and amplitude
of the fit maxima are poorly constrained by the available data,
and the sinusoidal fit is merely speculative. This leads the
torque for the cycle, shown with a solid gray line in the bottom
panel of Figure 4, to be much larger than the ZDI epochs,
shown with black dots.
The average torque calculated for the ZDI epochs of ξ Boo A,

using FM18, is 2.31×1031 erg. Averaging the sinusoidal model
instead, we produce a torque of 3.10×1031 erg. The rotational
evolution torque from M15 gives a value of 7.48×1032 erg.

4.2.5. τ Bootis A

τ Boo A is currently the star most extensively monitored
with ZDI (Donati et al. 2008; Fares et al. 2009; Mengel et al.
2016; Jeffers et al. 2018). From these studies, authors have
found τ Boo A to have a magnetic cycle with polarity reversals
in phase with its chromospheric activity cycle of 120 day, as
observed for the Sun and 61 Cyg A. Its mass-loss rate is not
observationally constrained, but MHD simulations of the stellar
wind surrounding τ Boo A have been produced by Nicholson
et al. (2016), using maps from some of the ZDI epochs
considered here. We include these results in Figure 5, using
blue squares to indicate their derived mass-loss rates and
angular momentum-loss rates. We calculate the torque-
averaged Alfvén radii associated with these simulated values
using Equation (1), and display them in Figure 6 as light blue
squares. For clarity, we also show a phase-folded version of
Figure 5 in Appendix B (Figure 8).
Equation (3) predicts the efficiency of angular momentum loss

to be low and dominated by the octupolar scaling. Both this work
and the simulations of Nicholson et al. (2016) predict a torque-
averaged lever arm of *~ R2 , which is much lower than the other
stars in the sample (see Figure 6). We calculate the average torque
from the ZDI epochs of τ Boo A, using FM18, to be 1.23×
1032 erg. The sinusoidal model has an average torque of 1.32×
1032 erg. The torque from M15 is calculated to be
3.67×1032 erg.

4.3. Comparison of Torques

In Figure 7, the predictions of M15 for each star are shown
with a range of Rossby numbers, using solid lines. We indicate
the torque for each star in this model, at its respective Rossby
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number from Table 1, with a colored square. The torques
using FM18 and the multiple ZDI epochs are shown with
corresponding colored circles. As with Figure 6, typical
uncertainties in observed rotation rates (±10%), mass-loss
rates (±10%), and field strengths (±1G) of each star lead to
errors in the predictions of Equations (1)–(3). The range of
possible torques for each star, given these uncertainties, is
indicated with red limits. While these uncertainties are
significant, they are not large enough to affect any of our
conclusions. For the dipole-dominated stars, the FM18 torques
appear systematically lower than those expected from M15, by
a factor of roughly 10–30. Gray points show the result of
multiplying all the FM18 torques by a factor of 20, which
brings all of the dipole-dominated stars into agreement.

However, τ Boo A requires a much smaller factor of ∼3 to
bring the two torques into agreement. Why the torques for τ
Boo A are in better agreement than the other starsʼ is unknown.
However, it is worth noting that the mass-loss rate for this star
has not been measured. Instead, we used the average mass-loss
rate from Nicholson et al. (2016), which is directly dependent
on their choice of base wind density and temperature. Given
that these quantities are not constrained well by observations,
the mass-loss rates obtained from these simulations are
effectively (although indirectly) assumed a priori. The same
is true for all such models. If the true mass-loss rate is smaller
than the value used here, the difference between torques may
increase such that we may find a truly systematic value between
the two methods for all of the sample stars. If the mass-loss rate
of τ Boo A were smaller, its torque might also become dipole-
dominated like the rest of the sample.

5. Discussion

5.1. Systematic Differences between the FM18 and M15
Torques

For all the stars in our sample, the torques from FM18
systematically predict lower angular momentum-loss rates when

compared to the rotational evolution torques from M15. This was
also the case in Paper I, wherein we suggested a possible solution:
the Sun may be in a low torque state at present. Given that all five
stars here are low, and it seems unlikely that they would all be in a
low state, a different explanation should be explored.
A systematic difference between the FM18 and M15 torques

suggests there should be sources of underestimation in either the
MHD modeling, the rotation-evolution models, or the observed
properties of these stars. Paper I showed that, for the Sun, using the
surface field strength leads to a torque estimate lower than those
based on the open magnetic flux, by a factor of ∼7. It remains
unclear why this is so. It may be due to underestimation of field
strengths in magnetograms, or to the coronal magnetic field
becoming open much closer to the solar surface. Underprediction
of the open magnetic flux will artificially reduce the braking
torque, given the strong correlation shown by Réville et al. (2015).
There are likely also systematics in the magnetic field strengths

obtained from ZDI. It is well-known that ZDI does not reconstruct
all of the photospheric magnetic field due to flux cancellation
effects (Reiners & Basri 2009; Lehmann et al. 2018; V. See et al.
2019a, in preparation). Recently, Lehmann et al. (2019) showed
that ZDI sometimes underestimates the field strengths of the large-
scale field components, i.e., the dipole, quadrupole, and octupole,
by a factor of a few. Consequently, the spin-down torques will
also be underestimated (see also the discussion by V. See et al.
(2019b), in preparation). Additionally, the method used to
calculate dip, quad, and oct from the results of ZDI may
lead to underestimation of the strength of the magnetic field.
Given the inherent non-axisymmetry of the ZDI fields, the values
we calculate simply approximate the relative strengths of each
component. Typically, the polar field values required for the
Equation (3) will be larger than the global average field strength
used in this work, but the effect this has is not large enough to
modify our conclusions.
To increase the FM18 torques by a factor of 20, for example,

would require ∼4×greater average Alfvén radii (or ∼26×
stronger dipole field strengths) than observed. Based on this, it
is not clear whether this discrepancy can be explained with our
current knowledge. Perhaps a combination of wind energetics
(as discussed in Paper I for the open flux problem) and the
systematics of ZDI might be able to explain the underprediction
of the FM18 torques versus those of M15.

5.2. The Impact of Magnetic Variability on Dynamical Torque
Estimates

During each sequence of ZDI observations, our sample stars
experience variability in their global magnetic field strength and
topology. In Figure 6, the predicted average Alfvén radii for each
ZDI epoch are plotted with a symbol that represents the governing
topology in Equation (3). In the majority of cases, despite
strengthening of the multipolar components, the dipole component
governs the location of the torque-averaged Alfvén radius.
Similarly, V. See et al. (2019b, in preparation) show, for a

large range of stars observed with ZDI, that Equation (3)
predicts angular momentum-loss rates to be dominated by the
dipolar component. However, for sufficiently high mass-loss
rates and weak dipolar fields, as seen in this work with τ Boo
A, some stars can have multipolar-dominated wind braking.
These stars possess low wind magnetizations and therefore
have small average Alfvén radii. Note that, if the field strengths
are underestimated, as discussed in Section 5.1, even τ Boo A
could then be dipole-dominated.

Figure 7. Angular momentum-loss rate vs. Rossby number. Solid lines
represent the M15 models for each star in our sample, over a range of Rossby
numbers. Colored squares indicate the predicted value, given our calculated
Rossby numbers in Table 1. The torques computed from ZDI epochs and
the FM18 braking law are shown with colored circles. The range of
observational uncertainty in the prediction of FM18 is shown with red limiting
triangles. In all cases, the modeled torques using FM18 are lower when
compared to those from M15. Multiplication of the FM18 torques by a factor of
20, shown in gray, brings the models toward rough agreement.
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In general, the extrema of the torques from our ZDI stars are
0.5–1.9 times the average torque, tá ñFM18 . Using the sub-
sampled solar epochs, we find the maximum torque to be

tá ñ2.3 FM18 . If we instead consider the complete data set from
Paper I, we find the maximum torque to be tá ñ2.5 FM18 , slightly
larger than the subsampled value. Similarly, for other stars, we
expect that the true amplitude of variability could be larger than
represented by the sparse sampling. The next-largest amplitude
of variation is found for ò Eri, where the maximum torque is

tá ñ1.9 FM18 in the ZDI epoch of 2013.75. The smallest amplitude
of torque variability belongs to τ Boo A, which has a minimum
torque of tá ñ0.7 FM18 , and a maximum torque of tá ñ1.3 FM18 .

We find results gained by subsampling the solar data set
produce average torques that are dependent on the selected
magnetogram epochs. For example, by changing the length of
the available data set and selecting a different set of 13 epochs,
we can find average torques of 0.3–0.4×1030 erg, due to
preferentially selecting epochs from cycle 24 or 23, respec-
tively (with 23 being stronger than 24). Equally, reducing the
number of epochs used in the data set from 13 to 6 can change
the average torque to a similar degree, but also generally
decreases the maximum torque to values comparable to those
of the ZDI stars ( t~ á ñ2 FM18 ). Reducing the number of epochs
further can lead to extreme values in the average torques from
0.1 to 0.8×1030 erg, due to short-term variability in the
data set.

Estimates like this for the Sun hint at how a restricted data
set may bias the time-varying torque estimates for other stars.
Based on the results from this work, it appears that stellar wind
variability has a much smaller effect than is required to remedy
the discrepancy between stellar wind torques and their long-
time rotation evolution counterparts. However, variability can
confuse the issue and should be accounted for in future works.

5.3. Establishing the Timescales of Variability

In this work, we are able to calculate the time-varying torque
for four stars with a cadence of ∼1–2 yr, over a period of nearly
decade. The torqueʼs variation due to magnetic variability can
be thought of as an uncertainty in estimating the current
average torque for a given star based on a single observation. In
Paper I, the variability of the solar wind was examined on a
much shorter (∼27 day) cadence over two decades, so we
were able to estimate the torque more continuously. Even so,
variability in the solar wind is observed on still-shorter
timescales. These day-to-day and hour-to-hour variations in
the solar wind are averaged in our calculations in Paper I, in
order to better represent the global wind when using
observations from a single in situ location. The impact such
fluctuations have on the 27 day torque averages remains an
open question.

On timescales of centuries to millennia (still shorter than the
braking timescale), there is also evidence for further magnetic
variability. For the Sun, indirect methods of detecting this
variability, such as examining the concentration of cosmogenic
radionuclides ( C14 , Be10 , etc.) in tree trunks or polar ice cores,
have been successful at recovering changes in the magnetic
field over the last millennium (Wu et al. 2018). For other stars,
we are unable to examine the evolution of their magnetism
for longer than current observations allow. However, the
observed spread of magnetic activity indicators (e.g., X-rays;

Wright et al. 2011) around their secular trends could be caused
by variability (as opposed to true differences in starsʼ average
properties). It is still not clear how such long-term variability
may skew our current evaluation of stellar braking torques.

6. Conclusion

In this paper, we have quantified the effect of observed
magnetic variability on the predicted angular momentum-loss
rates for four Sun-like stars. Our sample stars have all been
repeatedly observed with ZDI, which provides information on
the topology of the magnetic field. This information is then
combined with estimates of their mass-loss rates from studies
of astrospheric Lyα, as well as a relationship for the stellar
wind braking given by FM18. We compare these time-varying
estimates of the angular momentum-loss rate to the long-time-
averaged value predicted by M15, a rotational evolution model.
We find that, similarly to what was found for the Sun in

Paper I, the angular momentum-loss rates predicted vary
significantly (roughly 0.5–1.5 times their average values), such
that torques calculated using single observational epochs can
differ from the decadal average torque on the star. This
represents an uncertainty when calculating torques for stars
with single epochs of observation.
Our calculated angular momentum-loss rates based on FM18

are found to be systematically lower than the long-time-
averaged torques required by M15. We do not know the origin
of this discrepancy, but it could be due (at least in part) to
several factors: the open flux problem, whereby wind models
currently underpredict the observed open magnetic flux for the
Sun; problems with observed parameters, such as the potential
systematic effects from the ZDI technique in recovering the
correct field strengths (Lehmann et al. 2019); problems with
rotation-evolution models; or longer-term variability in the
torque. Such longer-term variability has the potential to affect
our predictions for the long-time (∼10–100Myr) average
torque required by rotation evolution models.
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Appendix A
Sun-as-a-star Data

Table 3 displays the selected magnetogram observations
from SOHO/MDI and SDO/HMI used in Figure 1, along with
the results of the angular momentum-loss calculation using
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both the formulae from FM18 and M15, where symbols have
the same meaning as in Table 2.

Appendix B
Alternative View of τ Bootis A Data

Here, we show the result of phase-folding the data from
Figure 5 (Figure 8). τ Boo A is estimated to have a short

magnetic cycle period of around 240 days, which is in-phase
with its 120 day chromospheric activity cycle. We phase-fold
the data for τ Boo A on the timescale of its chromospheric
cycle, rather than its magnetic cycle, as our predictions do not
consider the polarity of the magnetic field. Given cycle-to-cycle
variation in length and strength, fitting a simple sinusoid does
not fit all of the magnetic variation well.

Table 3
Solar Magnetic Properties and Angular Momentum-loss Results

Star Magnetogram B* dip quad oct *á ñR RA tFM18 tM15 tM15
Name Epoch (Instrument) (G) *ºB Bdip *ºB Bquad *ºB Boct (×1030 erg) (×1030 erg) tá ñFM18

Sun 1996.76(MDI) 8.0 0.38 0.11 0.51 5.9 0.87 6.20 16.55
1998.49(MDI) 7.5 0.37 0.18 0.45 6.0 0.69 L L
2000.65(MDI) 5.7 0.22 0.16 0.62 4.3 0.30 L L
2002.37(MDI) 8.1 0.21 0.32 0.47 5.0 0.39 L L
2004.16(MDI) 6.6 0.27 0.06 0.67 5.7 0.32 L L
2005.88(MDI) 6.1 0.32 0.15 0.53 5.3 0.44 L
2007.59(MDI) 5.2 0.34 0.09 0.57 5.3 0.37 L L
2009.31(MDI) 3.9 0.38 0.06 0.56 5.7 0.23 L L
2011.18(HMI) 3.1 0.30 0.33 0.37 4.3 0.17 L L
2012.89(HMI) 2.1 0.23 0.30 0.47 3.2 0.10 L L
2014.61(HMI) 4.1 0.21 0.50 0.29 4.1 0.19 L L
2016.33(HMI) 5.7 0.31 0.29 0.40 5.2 0.36 L L
2018.12(HMI) 5.2 0.38 0.07 0.55 5.4 0.44 L L
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