58 research outputs found

    Near-future CO2 levels impair the olfactory system of a marine fish

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordData availability: All raw sequence data are accessible at the NCBI Sequence Read Archive through accession number SRP097118. Water chemistry, behaviour and electrophysiology data are available through Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.884674).Survival of marine fishes that are exposed to elevated near-future CO2levels is threatened by their altered responses to sensory cues. Here we demonstrate a physiological and molecular mechanism in the olfactory system that helps to explain altered behaviour under elevated CO2. We combine electrophysiology measurements and transcriptomics with behavioural experiments to investigate how elevated CO2affects the olfactory system of European sea bass (Dicentrarchus labrax). When exposed to elevated CO2(approximately 1,000 µatm), fish must be up to 42% closer to an odour source for detection, compared with current CO2levels (around 400 µatm), decreasing their chances of detecting food or predators. Compromised olfaction correlated with the suppression of the transcription of genes involved in synaptic strength, cell excitability and wiring of the olfactory system in response to sustained exposure to elevated CO2levels. Our findings complement the previously proposed impairment of γ-aminobutyric acid receptors, and indicate that both the olfactory system and central brain function are compromised by elevated CO2levels.This study was supported by grants from Association of European Marine Biology Laboratories (227799), the Natural Environment Research Council (R.W.W.; NE/H017402/1), the Biotechnology and Biological Sciences Research Council (R.W.W.; BB/D005108/1), Fundação para a Ciência e Tecnologia (Portuguese Science Ministry) (UID/Multi/04326/2013) and a Royal Society Newton International Fellowship to C.S.P. C.S.P. is also a beneficiary of a Starting Grant from AXA

    Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering

    No full text
    During chemical weathering, magnesium (Mg) is released by the dissolution of both carbonate and silicate sources. The degree to which solute concentrations and isotopic compositions of rivers reflect the relative proportions of these two inputs, or cycling by a series of processes associated with weathering is poorly constrained. In the river waters of the Mackenzie Basin (Canada), the Mg content is high and Mg isotope ratios (26Mg/24Mg expressed as δ Mg 26 ) show in excess of one per mil variability. Part of this variability is attributed to the 3‰ range in the carbonate and silicate rocks drained. Despite this inherent lithological control on river water δ Mg 26 values, there is also evidence for a fractionation control. A linear positive covariation between lithium (7Li/6Li, expressed as δ Li 7 ) and Mg isotope ratios in the river waters of the Mackenzie Basin is reported. This covariation is not expected because previously reported fractionation related to physicochemical processes associated with clays or oxides should induce a negative covariation with Mg isotope ratios
    corecore