14,569 research outputs found
User's guide for a computer program to analyze the LRC 16 ft transonic dynamics tunnel cable mount system
The theoretical derivation of the set of equations is discussed which is applicable to modeling the dynamic characteristics of aeroelastically-scaled models flown on the two-cable mount system in a 16 ft transonic dynamics tunnel. The computer program provided for the analysis is also described. The program calculates model trim conditions as well as 3 DOF longitudinal and lateral/directional dynamic conditions for various flying cable and snubber cable configurations. Sample input and output are included
User's guide for a revised computer program to analyze the LRC 16 foot transonic dynamics tunnel active cable mount system
The revision of an existing digital program to analyze the stability of models mounted on a two-cable mount system used in a transonic dynamics wind tunnel is presented. The program revisions and analysis of an active feedback control system to be used for controlling the free-flying models are treated
Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids
During the last two years the RealityGrid project has allowed us to be one of
the few scientific groups involved in the development of computational grids.
Since smoothly working production grids are not yet available, we have been
able to substantially influence the direction of software development and grid
deployment within the project. In this paper we review our results from large
scale three-dimensional lattice Boltzmann simulations performed over the last
two years. We describe how the proactive use of computational steering and
advanced job migration and visualization techniques enabled us to do our
scientific work more efficiently. The projects reported on in this paper are
studies of complex fluid flows under shear or in porous media, as well as
large-scale parameter searches, and studies of the self-organisation of liquid
cubic mesophases.
Movies are available at
http://www.ica1.uni-stuttgart.de/~jens/pub/05/05-PhilTransReview.htmlComment: 18 pages, 9 figures, 4 movies available, accepted for publication in
Phil. Trans. R. Soc. London Series
Terahertz magneto-spectroscopy of transient plasmas in semiconductors
Using synchronized near-infrared (NIR) and terahertz (THz) lasers, we have
performed picosecond time-resolved THz spectroscopy of transient carriers in
semiconductors. Specifically, we measured the temporal evolution of THz
transmission and reflectivity after NIR excitation. We systematically
investigated transient carrier relaxation in GaAs and InSb with varying NIR
intensities and magnetic fields. Using this information, we were able to
determine the evolution of the THz absorption to study the dynamics of
photocreated carriers. We developed a theory based on a Drude conductivity with
time-dependent density and density-dependent scattering lifetime, which
successfully reproduced the observed plasma dynamics. Detailed comparison
between experimental and theoretical results revealed a linear dependence of
the scattering frequency on density, which suggests that electron-electron
scattering is the dominant scattering mechanism for determining the scattering
time. In InSb, plasma dynamics was dramatically modified by the application of
a magnetic field, showing rich magneto-reflection spectra, while GaAs did not
show any significant magnetic field dependence. We attribute this to the small
effective masses of the carriers in InSb compared to GaAs, which made the
plasma, cyclotron, and photon energies all comparable in the density, magnetic
field, and wavelength ranges of the current study.Comment: 8 pages, 9 figures, submitted to Phys. Rev.
Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem
An extremely useful evolution equation that allows systematically calculating
the two-time correlation functions (CF's) of system operators for non-Markovian
open (dissipative) quantum systems is derived. The derivation is based on
perturbative quantum master equation approach, so non-Markovian open quantum
system models that are not exactly solvable can use our derived evolution
equation to easily obtain their two-time CF's of system operators, valid to
second order in the system-environment interaction. Since the form and nature
of the Hamiltonian are not specified in our derived evolution equation, our
evolution equation is applicable for bosonic and/or fermionic environments and
can be applied to a wide range of system-environment models with any factorized
(separable) system-environment initial states (pure or mixed). When applied to
a general model of a system coupled to a finite-temperature bosonic environment
with a system coupling operator L in the system-environment interaction
Hamiltonian, the resultant evolution equation is valid for both L = L^+ and L
\neq L^+ cases, in contrast to those evolution equations valid only for L = L^+
case in the literature. The derived equation that generalizes the quantum
regression theorem (QRT) to the non-Markovian case will have broad applications
in many different branches of physics. We then give conditions on which the QRT
holds in the weak system-environment coupling case, and apply the derived
evolution equation to a problem of a two-level system (atom) coupled to a
finite-temperature bosonic environment (electromagnetic fields) with L \neq
L^+.Comment: To appear in the Journal of Chemical Physics (12 pages, 1 figure
Anharmonicity Induced Resonances for Ultracold Atoms and their Detection
When two atoms interact in the presence of an anharmonic potential, such as
an optical lattice, the center of mass motion cannot be separated from the
relative motion. In addition to generating a confinement-induced resonance (or
shifting the position of an existing Feshbach resonance), the external
potential changes the resonance picture qualitatively by introducing new
resonances where molecular excited center of mass states cross the scattering
threshold. We demonstrate the existence of these resonances, give their
quantitative characterization in an optical superlattice, and propose an
experimental scheme to detect them through controlled sweeping of the magnetic
field.Comment: 6 pages, 5 figures; expanded presentatio
Intense slow beams of bosonic potassium isotopes
We report on an experimental realization of a two-dimensional magneto-optical
trap (2D-MOT) that allows the generation of cold atomic beams of 39K and 41K
bosonic potassium isotopes. The high measured fluxes up to 1.0x10^11 atoms/s
and low atomic velocities around 33 m/s are well suited for a fast and reliable
3D-MOT loading, a basilar feature for new generation experiments on
Bose-Einstein condensation of dilute atomic samples. We also present a simple
multilevel theoretical model for the calculation of the light-induced force
acting on an atom moving in a MOT. The model gives a good agreement between
predicted and measured flux and velocity values for our 2D-MOT.Comment: Updated references, 1 figure added, 10 pages, 9 figure
Ultracold molecules: vehicles to scalable quantum information processing
We describe a novel scheme to implement scalable quantum information
processing using Li-Cs molecular state to entangle Li and Cs
ultracold atoms held in independent optical lattices. The Li atoms will
act as quantum bits to store information, and Cs atoms will serve as
messenger bits that aid in quantum gate operations and mediate entanglement
between distant qubit atoms. Each atomic species is held in a separate optical
lattice and the atoms can be overlapped by translating the lattices with
respect to each other. When the messenger and qubit atoms are overlapped,
targeted single spin operations and entangling operations can be performed by
coupling the atomic states to a molecular state with radio-frequency pulses. By
controlling the frequency and duration of the radio-frequency pulses,
entanglement can either be created or swapped between a qubit messenger pair.
We estimate operation fidelities for entangling two distant qubits and discuss
scalability of this scheme and constraints on the optical lattice lasers
An information adaptive system study report and development plan
The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines
- …