8,074 research outputs found
Clergy work-related psychological health : listening to the Ministers of Word and Sacrament within the United Reformed Church in England
Drawing on the classic model of balanced affect proposed by Bradburn (The structure of psychological well-being, Aldine, Chicago, IL, 1969), this study conceptualised poor work-related psychological health in terms of high levels of negative affect in the absence of acceptable levels of positive affect. In order to illuminate self-perceptions of work-related psychological health among a well-defined group of clergy, a random sample of 58 ministers of word and sacrament serving within the west midlands synod of the United Reformed Church in England completed an open-ended questionnaire concerned with the following six guiding questions. Do you enjoy your work? How would you define stress? How would you define burnout? What stresses are there in your ministry? What do you do to keep healthy? What can the church do to enhance the work-related psychological health of ministers? Content analysis highlighted the main themes recurring through these open-ended responses. The conclusion is drawn that ministers of word and sacrament within the United Reformed Church in England are exposed to a number of recurrent recognisable sources of stress. Suggestions are advanced regarding the need for future more detailed research and for the development of more effective pastoral strategies
The Advantage of Increased Resolution in the Study of Quasar Absorption Systems
We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V =
14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum
obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902
and the multiple cloud, weak MgII system at z = 1.0414, we find that at the
higher resolution, additional components are resolved in a blended profile. We
find that two single-cloud weak MgII absorbers were already resolved at R =
45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R =
120, 000 spectrum is a component of the Galactic NaI absorption, with b =
0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various
applications, including studies of DLAs, the MgI phases of strong MgII
absorbers, and high velocity clouds. By applying Voigt profile fitting to
synthetic lines, we compare the consistency with which line profile parameters
can be accurately recovered at R = 45,000 and R = 120,000. We estimate the
improvement gained from superhigh resolution in resolving narrowly separated
velocity components in absorption profiles. We also explore the influence of
isotope line shifts and hyperfine splitting in measurements of line profile
parameters, and the spectral resolution needed to identify these effects. Super
high resolution spectra of quasars, which will be routinely possible with
20-meter class telescopes, will lead to greater sensitivity for absorption line
surveys, and to determination of more accurate physical conditions for cold
phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at
http://www.astro.psu.edu/users/anand/superhigh.AJ.pd
Identification of diverse database subsets using property-based and fragment-based molecular descriptions
This paper reports a comparison of calculated molecular properties and of 2D fragment bit-strings when used for the selection of structurally diverse subsets of a file of 44295 compounds. MaxMin dissimilarity-based selection and k-means cluster-based selection are used to select subsets containing between 1% and 20% of the file. Investigation of the numbers of bioactive molecules in the selected subsets suggest: that the MaxMin subsets are noticeably superior to the k-means subsets; that the property-based descriptors are marginally superior to the fragment-based descriptors; and that both approaches are noticeably superior to random selection
An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group
To characterize the absorption properties of this circumgalactic medium (CGM)
and its relation to the LG we present the so-far largest survey of metal
absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet
(UV) spectra of extragalactic background sources. The UV data are obtained with
the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST)
and are supplemented by 21 cm radio observations of neutral hydrogen. Along 270
sightlines we measure metal absorption in the lines of SiII, SiIII, CII, and
CIV and associated HI 21 cm emission in HVCs in the velocity range
|v_LSR|=100-500 km s^-1. With this unprecedented large HVC sample we were able
to improve the statistics on HVC covering fractions, ionization conditions,
small-scale structure, CGM mass, and inflow rate. For the first time, we
determine robustly the angular two point correlation function of the
high-velocity absorbers, systematically analyze antipodal sightlines on the
celestial sphere, and compare the absorption characteristics with that of
Damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of
the LG. Our study demonstrates that the Milky Way CGM contains sufficient
gaseous material to maintain the Galactic star-formation rate at its current
level. We show that the CGM is composed of discrete gaseous structures that
exhibit a large-scale kinematics together with small-scale variations in
physical conditions. The Magellanic Stream clearly dominates both the cross
section and mass flow of high-velocity gas in the Milky Way's CGM. The possible
presence of high-velocity LG gas underlines the important role of the local
cosmological environment in the large-scale gas-circulation processes in and
around the Milky Way (abridged).Comment: 37 pages, 25 figures, 8 tables, accepted for publication in A&
The Distribution of High Redshift Galaxy Colors: Line of Sight Variations in Neutral Hydrogen Absorption
We model, via Monte Carlo simulations, the distribution of observed U-B, B-V,
V-I galaxy colors in the range 1.75<z<5 caused by variations in the
line-of-sight opacity due to neutral hydrogen (HI). We also include HI internal
to the source galaxies. Even without internal HI absorption, comparison of the
distribution of simulated colors to the analytic approximations of Madau (1995)
and Madau et al (1996) reveals systematically different mean colors and
scatter. Differences arise in part because we use more realistic distributions
of column densities and Doppler parameters. However, there are also
mathematical problems of applying mean and standard deviation opacities, and
such application yields unphysical results. These problems are corrected using
our Monte Carlo approach. Including HI absorption internal to the galaxies
generaly diminishes the scatter in the observed colors at a given redshift, but
for redshifts of interest this diminution only occurs in the colors using the
bluest band-pass. Internal column densities < 10^17 cm^2 do not effect the
observed colors, while column densities > 10^18 cm^2 yield a limiting
distribution of high redshift galaxy colors. As one application of our
analysis, we consider the sample completeness as a function of redshift for a
single spectral energy distribution (SED) given the multi-color selection
boundaries for the Hubble Deep Field proposed by Madau et al (1996). We argue
that the only correct procedure for estimating the z>3 galaxy luminosity
function from color-selected samples is to measure the (observed) distribution
of redshifts and intrinsic SED types, and then consider the variation in color
for each SED and redshift. A similar argument applies to the estimation of the
luminosity function of color-selected, high redshift QSOs.Comment: accepted for publication in ApJ; 25 pages text, 14 embedded figure
- …