180 research outputs found

    Hexokinase II dissociation alone cannot account for changes in heart mitochondrial function, morphology and sensitivity to permeability transition pore opening following ischemia

    Get PDF
    We previously demonstrated that hexokinase II (HK2) dissociation from mitochondria during cardiac ischemia correlates with cytochrome c (cyt-c) loss, oxidative stress and subsequent reperfusion injury. However, whether HK2 release is the primary signal mediating this ischemia-induced mitochondrial dysfunction was not established. To investigate this, we studied the effects of dissociating HK2 from isolated heart mitochondria. Mitochondria isolated from Langendorff-perfused rat hearts before and after 30 min global ischemia ± ischemic preconditioning (IPC) were subject to in vitro dissociation of HK2 by incubation with glucose-6-phosphate at pH 6.3. Prior HK2 dissociation from pre- or end-ischemic heart mitochondria had no effect on their cyt-c release, respiration (± ADP) or mitochondrial permeability transition pore (mPTP) opening. Inner mitochondrial membrane morphology was assessed indirectly by monitoring changes in light scattering (LS) and confirmed by transmission electron microscopy. Although no major ultrastructure differences were detected between pre- and end-ischemia mitochondria, the amplitude of changes in LS was reduced in the latter. This was prevented by IPC but not mimicked in vitro by HK2 dissociation. We also observed more Drp1, a mitochondrial fission protein, in end-ischemia mitochondria. IPC failed to prevent this increase but did decrease mitochondrial-associated dynamin 2. In vitro HK2 dissociation alone cannot replicate ischemia-induced effects on mitochondrial function implying that in vivo dissociation of HK2 modulates end-ischemia mitochondrial function indirectly perhaps involving interaction with mitochondrial fission proteins. The resulting changes in mitochondrial morphology and cristae structure would destabilize outer / inner membrane interactions, increase cyt-c release and enhance mPTP sensitivity to [Ca2+]

    Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash

    Get PDF
    Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection. To dissect the virus and host immune factors during acute SVV infection, we analyzed four SVV-seronegative Chinese rhesus macaques infected intratracheally with cell-associated 5 × 103 plaque-forming units (pfu) of SVV-expressing green fluorescent protein (n = 2) or 5 × 104 pfu of wild-type SVV (n = 2). All monkeys developed viremia and SVV-specific adaptive B- and T-cell immune responses, but none developed skin rash. At necropsy 21 days postinfection, SVV DNA was found in ganglia along the entire neuraxis and in viscera, and SVV RNA was found in ganglia, but not in viscera. The amount of SVV inoculum was associated with the extent of viremia and the immune response to virus. Our findings demonstrate that acute SVV infection of Chinese rhesus macaques leads to ganglionic infection by the hematogenous route and the induction of a virus-specific adaptive memory response in the absence of skin rash

    A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene

    Get PDF
    Varicella-zoster virus (VZV), an alphaherpesvirus, establishes lifelong latent infection in the neurons of >90% humans worldwide, reactivating in one-third to cause shingles, debilitating pain and stroke. How VZV maintains latency remains unclear. Here, using ultra-deep virus-enriched RNA sequencing of latently infected human trigeminal ganglia (TG), we demonstrate the consistent expression of a spliced VZV mRNA, antisense to VZV open reading frame 61 (ORF61). The spliced VZV latency-associated transcript (VLT) is expressed in human TG neurons and encodes a protein with late kinetics in productively infected cells in vitro and in shingles skin lesions. Whereas multiple alternatively spliced VLT isoforms (VLTly) are expressed during lytic infection, a single unique VLT isoform, which specifically suppresses ORF61 gene expression in co-transfected cells, predominates in latently VZV-infected human TG. The discovery of VLT links VZV with the other better characterized human and animal neurotropic alphaherpesviruses and provides insights into VZV latency

    Gastrointestinal Endoscopic Terminology Coding (GET-C): A WHO-Approved Extension of the ICD-10

    Get PDF
    Technological developments have greatly promoted interest in the use of computer systems for recording findings and images at endoscopy and creating databases. The aim of this study was to develop a comprehensive WHO-approved code system for gastrointestinal endoscopic terminology. The International Classification of Diseases, 10th edition (ICD-10), and the ICD-10 clinical modification (ICD-10-CM) were expanded to allow description of every possible gastrointestinal endoscopic term under conditions defined by the WHO. Classifications of specific gastrointestinal disorders and endoscopic locations were added. A new chapter was developed for frequently used terminology that could not be classified in the existing ICD-10, such as descriptions of therapeutic procedures. The new extended code system was named Gastrointestinal Endoscopic Terminology Coding (GET-C). The GET-C is a complete ICD-10-related code system that can be used within every endoscopic database program for all specific endoscopic terms. The GET-C is available for free at http://www.trans-it.org/

    Decoding the Architecture of the Varicella-Zoster Virus Transcriptome

    Get PDF
    Varicella-zoster virus (VZV), a double-stranded DNA virus, causes varicella, establishes lifelong latency in ganglionic neurons, and reactivates later in life to cause herpes zoster, commonly associated with chronic pain. The VZV genome is densely packed and produces multitudes of overlapping transcripts deriving from both strands. While 71 distinct open reading frames (ORFs) have thus far been experimentally defined, the full coding potential of VZV remains unknown. Here, we integrated multiple short-read RNA sequencing approaches with long-read direct RNA sequencing on RNA isolated from VZV-infected cells to provide a comprehensive reannotation of the lytic VZV transcriptome architecture. Through precise mapping of transcription start sites, splice junctions, and polyadenylation sites, we identified 136 distinct polyadenylated VZV RNAs that encode canonical ORFs, noncanonical ORFs, and ORF fusions, as well as putative noncoding RNAs (ncRNAs). Furthermore, we determined the kinetic class of all VZV transcri

    Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency

    Get PDF
    Varicella-zoster virus (VZV) establishes lifelong neuronal latency in most humans world-wide, reactivating in one-third to cause herpes zoster and occasionally chronic pain. How VZV establishes, maintains and reactivates from latency is largely unknown. VZV transcription during latency is restricted to the latency-associated transcript (VLT) and RNA 63 (encoding ORF63) in naturally VZV-infected human trigeminal ganglia (TG). While significantly more abundant, VLT levels positively correlated with RNA 63 suggesting co-regulated transcription during latency. Here, we identify VLT-ORF63 fusion transcripts and confirm VLT-ORF63, but not RNA 63, expression in human TG neurons. During in vitro latency, VLT is transcribed, whereas VLT-ORF63 expression is induced by reactivation stimuli. One isoform of VLT-ORF63, encoding a fusion protein combining VLT and ORF63 proteins, induces broad viral gene transcription. Collectively, our findings show that VZV expresses a unique set of VLT-ORF63 transcripts, potentially involved in the transition from latency to lytic VZV infection

    Lower Risk of Recurrence with a Higher Induction Dose of Mesalazine and Longer Duration of Treatment in Ulcerative Colitis: Results from the Dutch, Non-Interventional, IMPACT Study

    Get PDF
    Background & Aims: The dose and duration of mesalazine treatment for ulcerative colitis (UC) is a potentially important determinant of effectiveness, with evidence suggesting that continuing the induction dose for 6-12 months may improve outcomes; however, real-world data are lacking. We assessed mesalazine use in Dutch clinical practice, including how differences in dose and duration affected UC outcomes.Methods: Adults with mild-to-moderate UC who received oral prolonged-release mesalazine de novo or had a dose escalation for an active episode were followed for 12 months in this non-interventional study (ClinicalTrials.gov identifier: NCT02261636). The primary endpoint was time from start of treatment to dose reduction (TDR). Secondary endpoints included recurrence rate, adherence, and work productivity.Results: In total, 151 patients were enrolled, of whom 108 (71.5%) were newly diagnosed with UC. The majority (120; 79.5%) received a dose of >= 4 g/day. Nearly one-third (48; 31.8%) underwent dose reduction, with mean TDR being 8.3 months. Disease extent and endoscopic appearance did not influence duration of induction therapy, while TDR increased with higher baseline UCDAI scores. TDR was longer in patients without (mean 8.8 months) than with (4.1 months) recurrence, although not significantly (p=0.09). Patients on >= 4 g/day had a significantly lower chance of recurrence versus those on 2-6 months vs 3-6 months: 0.19 (95%CI: 0.08-0.46); p= 4 g/day [0.15 (0.06-0.40) vs 0.26 (0.01-11.9) for 2-= 4 g/day) and longer duration of treatment (>6 months) was associated with a lower recurrence risk.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
    • …
    corecore