79 research outputs found

    Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450°C, 50 MPa

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 73 (2009): 6789-6804, doi:10.1016/j.gca.2009.07.036.Oxygen and hydrogen isotope fractionation factors in the talc-water and serpentine-water systems have been determined by laboratory experiment from 250 to 450°C at 50 MPa using the partial exchange technique. Talc was synthesized from brucite + quartz, resulting in nearly 100% exchange during reaction at 350 and 450°C. For serpentine, D-H exchange was much more rapid than 18O-16O exchange when natural chrysotile fibers were employed in the initial charge. In experiments with lizardite as the starting charge, recrystallization to chrysotile enhanced the rate of 18O-16O exchange with the coexisting aqueous phase.This work was supported by NSF Grants OCE-9313980 to the Woods Hole Oceanographic Institution and OCE-9820287 to Bridgewater State College (BSC)

    Using Google Scholar Institutional Level Data to Evaluate the Quality of University Research

    Get PDF
    In recent years, the extent of formal research evaluation, at all levels from the individual to the multiversity has increased dramatically. At the institutional level, there are world university rankings based on an ad hoc combination of different indicators. There are also national exercises, such as those in the UK and Australia that evaluate research outputs and environment through peer review panels. These are extremely costly and time consuming. This paper evaluates the possibility of using Google Scholar (GS) institutional level data to evaluate university research in a relatively automatic way. Several citation-based metrics are collected from GS for all 130 UK universities. These are used to evaluate performance and produce university rankings which are then compared with various rankings based on the 2014 UK Research Excellence Framework (REF). The rankings are shown to be credible and to avoid some of the obvious problems of the REF ranking, as well as being highly efficient and cost effective. We also investigate the possibility of normalizing the results for the university subject mix since science subjects generally produce significantly more citations than social science or humanities

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development

    Moving reactive interfaces and fractal carbonate replacement patterns in serpentinites: evidence from the southern Iberia Abyssal Plain

    No full text
    Serpentinized ultramafic rocks recovered from beneath the southern Iberia Abyssal Plain (Ocean Drilling Programme Leg 173) provide the first record of fractal carbonate replacement patterns in a serpentinite. The patterns are expressed as microscopic branching aggregates (clusters) of aragonite disseminated throughout the serpentinites. Aragonite growth was the final mineralization event. The aragonite diminishes rapidly in quantity from an essential to a trace component of the serpentinite over a distance of ~40 m from a normal fault. Decreasing abundance of aragonite away from the normal fault links the growth of the carbonate to the multistage hydrothermal mineralization associated with the fault. Aragonite clusters are concentrated in picrolite, where they are interwoven with colloid-sized chrysotile, and show fractal growth habits. Areas adjacent to the clusters are sites of Mg enrichment of the serpentine medium relative to aragonite-free picrolite. It is interpreted that the aragonite clusters result from incursions of reactive seawater solutions through fine-scale pore structures in and around the fault in response to pressure gradients emanating from active tectonism. Cluster growth is interpreted to be a percolation phenomenon and provides a novel source of information on the nature of fine-scale reactive fluid flow, pore-space connectivity, and carbonate replacement processes in serpentinites
    • …
    corecore