60 research outputs found

    Ultrafast all-optical wavelength conversion in silicon-insulator waveguides by means of cross phase modulation using 300 femtosecond pulses

    Get PDF
    In this paper we report the ultrafast all-optical wavelength conversion in Silicon-on-Insulator (SOI) waveguides. We used a pump-probe setup with 300 femtosecond pulses to demonstrate large temporal phase-shifts, caused by the Kerr effect and free carrier generation. Large wavelength shifts of a 1683nm probe signal have been observed. The wavelength conversion, ranging from 10nm redshifts to 15nm blueshifts, depending on the time delay between the pump and probe pulses, is caused by the pump induced Cross Phase Modulation. Furthermore, an all-optical switching scheme using SOI microring resonators is discussed. These results enable ultrafast all-optical switching using SOI microring resonators

    Ultrafast all-optical wavelength conversion in silicon waveguides using femtosecond pump-probe pulses

    Get PDF
    Experimental results on ultrafast all-optical wavelength conversion in silicon-on-insulator waveguides are presented. Red and blue shifts of 10nm have been observed in femtosecond pump-probe experiments. Alloptical switching and the importance of waveguide dispersion are discussed

    Self Phase Modulation and Stimulated Raman Scattering due to High Power Femtosecond Pulse Propagation in Silicon-on-Insulator Waveguides.

    Get PDF
    Self Phase Modulation (SPM) and Stimulated Raman Scattering (SRS) in silicon waveguides have been observed and will be discussed theoretically using a modified Nonlinear Schrödinger Equation. The high optical peak powers needed for the experiments were obtained by coupling sub-picosecond (200fs) transform limited pulses with a spectral width of 12nm into a single mode silicon waveguide. Spectral broadening up to 50nm has been observed due to Self Phase Modulation. An intensity increase of the idler spectrum around 1650nm at the expense of the 1550nm pump signal has been observed as function of pump power, indicating the presence of Stimulated Raman Scattering

    Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals

    Get PDF
    A time-resolved analysis of the amplitude and phase of THz pulses propagating through three-dimensional photonic crystals is presented. Single-cycle pulses of THz radiation allow measurements over a wide frequency range, spanning more than an octave below, at and above the bandgap of strongly dispersive photonic crystals. Transmission data provide evidence for slow group velocities at the photonic band edges and for superluminal transmission at frequencies in the gap. Our experimental results are in good agreement with finite-difference-time-domain simulations

    Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals

    Get PDF
    A time-resolved analysis of the amplitude and phase of THz pulses propagating through three-dimensional photonic crystals is presented. Single-cycle pulses of THz radiation allow measurements over a wide frequency range, spanning more than an octave below, at and above the bandgap of strongly dispersive photonic crystals. Transmission data provide evidence for slow group velocities at the photonic band edges and for superluminal transmission at frequencies in the gap. Our experimental results are in good agreement with finite-difference-time-domain simulations.Comment: 7 pages, 11 figure

    Electro-optically tunable microring resonators in lithium niobate

    Full text link
    Optical microresonators have recently attracted a growing attention in the photonics community. Their applications range from quantum electro-dynamics to sensors and filtering devices for optical telecommunication systems, where they are likely to become an essential building block. The integration of nonlinear and electro-optical properties in the resonators represents a very stimulating challenge, as it would incorporate new and more advanced functionality. Lithium niobate is an excellent candidate material, being an established choice for electro-optic and nonlinear optical applications. Here we report on the first realization of optical microring resonators in submicrometric thin films of lithium niobate. The high index contrast films are produced by an improved crystal ion slicing and bonding technique using benzocyclobutene. The rings have radius R=100 um and their transmission spectrum has been tuned using the electro-optic effect. These results open new perspectives for the use of lithium niobate in chip-scale integrated optical devices and nonlinear optical microcavities.Comment: 15 pages, 8 figure

    The electrophotonic silicon biosensor

    Get PDF
    The emergence of personalized and stratified medicine requires label-free and low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high sensitivity analysis with scalable, low-cost manufacturing technology but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here, we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomolecules. Our electro-photonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical processes enables site selective immobilization of different biomolecules, here single stranded DNA, onto individual microrings within a sensor array. The combination of photonic and electrochemical characterization of molecules bound to the sensor surface also provides direct quantification of binding density and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the micro-scale

    Организация и проведение аварийно-спасательных работ при ДТП с участием общественного транспорта

    Get PDF
    В статье описывается организация и проведение АСР при ДТП с участием общественного транспорта, рассматриваются действия спасателей в различных вариантах происшествия, описываются последовательность, и способы выполнения работ. Тhe article describes the organization and conduct of ASR in an accident involving public transport, examines the actions of rescuers in various versions of the incident, and describes the sequence and methods of performing the work
    corecore