145 research outputs found

    Evolution of Collisionally Merged Massive Stars

    Get PDF
    We investigate the evolution of collisionally merged stars with mass of ~100 Msun which might be formed in dense star clusters. We assumed that massive stars with several tens Msun collide typically after ~1Myr of the formation of the cluster and performed hydrodynamical simulations of several collision events. Our simulations show that after the collisions, merged stars have extended envelopes and their radii are larger than those in the thermal equilibrium states and that their interiors are He-rich because of the stellar evolution of the progenitor stars. We also found that if the mass-ratio of merging stars is far from unity, the interior of the merger product is not well mixed and the elemental abundance is not homogeneous. We then followed the evolution of these collision products by a one dimensional stellar evolution code. After an initial contraction on the Kelvin-Helmholtz (thermal adjustment) timescale (~10^{3-4} yr), the evolution of the merged stars traces that of single homogeneous stars with corresponding masses and abundances, while the initial contraction phase shows variations which depend on the mass ratio of the merged stars. We infer that, once runaway collisions have set in, subsequent collisions of the merged stars take place before mass loss by stellar winds becomes significant. Hence, stellar mass loss does not inhibit the formation of massive stars with mass of ~1000Msun

    Bigger Buffer k-d Trees on Multi-Many-Core Systems

    Get PDF
    A buffer k-d tree is a k-d tree variant for massively-parallel nearest neighbor search. While providing valuable speed-ups on modern many-core devices in case both a large number of reference and query points are given, buffer k-d trees are limited by the amount of points that can fit on a single device. In this work, we show how to modify the original data structure and the associated workflow to make the overall approach capable of dealing with massive data sets. We further provide a simple yet efficient way of using multiple devices given in a single workstation. The applicability of the modified framework is demonstrated in the context of astronomy, a field that is faced with huge amounts of data

    Numerical Simulations of Globular Cluster Formation

    Get PDF
    We examine various physical processes associated with the formation of globular clusters by using the three-dimensional Smoothed Particle Hydrodynamics (SPH) code. Our code includes radiative cooling of gases, star formation, energy feedback from stars including stellar winds and supernovae, and chemical enrichment by stars. We assume that, in the collapsing galaxy, isothermal cold clouds form through thermal condensations and become proto-globular clouds. We calculate the size of proto-globular clouds by solving the linearized equations for perturbation. We compute the evolution of the inner region of the proto-cloud with our SPH code for various initial radius and initial composition of gases. When the initial gases contain no heavy elements, the evolution of proto-clouds sensitively depends on the initial radius. For a smaller initial radius, the initial star burst is so intense that the subsequent star formation occurs in the central regions to form a dense star cluster as massive as the globular cluster. When the initial gases contain some heavy elements, the metallicity of gases affects the evolution and the final stellar mass. If the initial radius of the proto-globular clouds was relatively large, the formation of a star cluster as massive as the globular clusters requires the initial metallicity as high as [Fe/H] ≥−2\geq -2. The self-enrichment of heavy elements in the star cluster does not occur in all cases.Comment: Accpeted for publication in the ApJ. Correctiong errors in Table

    Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows II: Effect of Turbulence and Metal-Line Cooling

    Full text link
    In the primordial universe, low mass structures with virial temperatures less than 104^{4} K were unable to cool by atomic line transitions, leading to a strong suppression of star formation. On the other hand, these "minihalos" were highly prone to triggered star formation by interactions from nearby galaxy outflows. In Gray & Scannapieco (2010), we explored the impact of nonequilibrium chemistry on these interactions. Here we turn our attention to the role of metals, carrying out a series of high-resolution three-dimensional adaptive mesh refinement simulations that include both metal cooling and a subgrid turbulent mixing model. Despite the presence of an additional coolant, we again we find that outflow-minihalo interactions produce a distribution of dense, massive stellar clusters. We also find that these clusters are evenly enriched with metals to a final abundance of Z ≈\approx 10−2^{-2} Z⊙_{\odot}. As in our previous simulations, all of these properties suggest that these interactions may have given rise to present-day halo globular clusters.Comment: 14 pages, 8 figures, Accepted to Ap

    PyCOOL - a Cosmological Object-Oriented Lattice code written in Python

    Full text link
    There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL . Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/ .Comment: 23 pages, 12 figures; some typos correcte

    Near-Infrared Properties of Metal-poor Globular Clusters in the Galactic Bulge Direction

    Full text link
    Aims. J, H, and K' images obtained from the near-infrared imager CFHTIR on the Canada-France-Hawaii Telescope are used to derive the morphological parameters of the red giant branch (RGB) in the near-infrared color-magnitude diagrams for 12 metal-poor globular clusters in the Galactic bulge direction. Using the compiled data set of the RGB parameters for the observed 12 clusters, in addition to the previously studied 5 clusters, we discuss the properties of the RGB morphology for the clusters and compare them with the calibration relations for the metal-rich bulge clusters and the metal-poor halo clusters. Methods. The photometric RGB shape indices such as colors at fixed magnitudes of MK = MH = (-5.5, -5, -4, and -3), magnitudes at fixed colors of (J - K)o = (J - H)o = 0.7, and the RGB slope are measured from the fiducial normal points defined in the near- infrared color-magnitude diagrams for each cluster. The magnitudes of RGB bump and tip are also estimated from the differential and cumulative luminosity functions of the selected RGB stars. The derived RGB parameters have been used to examine the overall behaviors of the RGB morphology as a function of cluster metallicity. Results. The correlations between the near-infrared photometric RGB shape indices and the cluster metallicity for the programme clusters compare favorably with the previous observational calibration relations for metal-rich clusters in the Galactic bulge and the metal-poor halo clusters. The observed near-infrared magnitudes of the RGB bump and tip for the investigated clusters are also in accordance with the previous calibration relations for the Galactic bulge clusters.Comment: 12 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Instabilities and Mixing in SN 1993J

    Get PDF
    Rayleigh-Taylor (R-T) instabilities in the explosion of SN 1993J are investigated by means of two-dimensional hydrodynamical simulations. It is found that the extent of mixing is sensitive to the progenitor's core mass and the envelope mass. Because the helium core mass (3 - 4 \ms) is smaller than that of SN 1987A, R-T instabilities at the He/C+O interfaces develop to induce a large scale mixing in the helium core, while the instability is relatively weak at the H/He interface due to the small envelope mass. The predicted abundance distribution, in particular the amount of the \ni~ mixing, is compared with those required in the theoretical light curves and the late time optical spectra. This enables us to specify the progenitor of SN 1993J in some detail.Comment: 20 pages, LaTeX (AASTeX), to appear in Ap

    Monoallelic maternal expression of STAT5A affects embryonic survival in cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproductive disorders and infertility are surprisingly common in the human population as well as in other species. The decrease in fertility is a major cause of cow culling and economic loss in the dairy herd. The conception rate has been declining for the past 30–50 years. Conception rate is the product of fertilization and embryonic survival rates. In a previous study, we have identified associations of several single nucleotide polymorphisms (SNPs) in the signal transducer and activator 5A (<it>STAT5A</it>) with fertilization and survival rates in an <it>in </it>vitro experimental system. The objectives of this study are to fine map the <it>STAT5A </it>region in a search for causative mutations and to investigate the parent of origin expression of this gene.</p> <p>Results</p> <p>We have performed a total of 5,222 fertilizations and produced a total of 3,696 in vitro fertilized embryos using gametes from 440 cows and eight bulls. A total of 37 SNPs were developed in a 63.4-kb region of genomic sequence that includes <it>STAT5A</it>, <it>STAT3</it>, and upstream and downstream sequences of these genes. SNP153137 (G/C) in exon 8 of <it>STAT5A </it>was associated with a significant variability in embryonic survival and fertilization rate compared to all other examined SNPs. Expression analysis revealed that <it>STAT5A </it>is primarily monoallelically expressed in early embryonic stages but biallelically expressed in later fetal stages. Furthermore, the occurrence of monoallelic maternal expression of <it>STAT5A </it>was significantly higher in blastocysts, while paternal expression was more frequent in degenerative embryos.</p> <p>Conclusion</p> <p>Our results imply that <it>STAT5A </it>affects embryonic survival in a manner influenced by developmental stage and allele parent of origin.</p

    Isotonic Glycerol and Sodium Hyaluronate Containing Artificial Tear Decreases Conjunctivochalasis after One and Three Months: A Self-Controlled, Unmasked Study.

    Get PDF
    Dry eye complaints are ranked as the most frequent symptoms of patients visiting ophthalmologists. Conjunctivochalasis is a common dry eye disorder, which can cause an unstable tear film and ocular discomfort. The severe conjunctivochalasis characterized by high LId-Parallel COnjunctival Folds (LIPCOF) degree usually requires surgical intervention, where a conservative therapy would be highly desirable. Here we examined the efficacy of a preservative-free, inorganic salt-free unit-dose artificial tear, called Conheal containing isotonic glycerol and 0.015% sodium hyaluronate in a prospective, unmasked, self-controlled study involving 20 patients. The regular use of the glycerol/hyaluronate artificial tear in three months caused a significant improvement in the recorded parameters. Conjunctivochalasis decreased from a mean LIPCOF degree of 2.9 ± 0.4 on both eyes to 1.4 ± 0.6 on the right (median decrease of -2 points, 95% CI from -2.0 to -1.0), and to 1.4 ± 0.7 on the left eye (median decrease of -1 points, 95% CI from -2.0 to -1.0) (p<0.001 for both sides). The tear film breakup time (TFBUT) lengthened from 4.8 ± 1.9 seconds on both eyes to 5.9 ± 2.3 seconds (mean increase of 1.1 seconds, 95% CI from 0.2 to 2.0) and 5.7 ± 1.8 seconds (mean increase of 0.9 seconds, 95% CI from 0.3 to 1.5) on the right and left eyes, respectively (p(right eyes) = 0.020, p(left eyes) = 0.004). The corneal lissamine staining (Oxford Scheme grade) was reduced from 1.3 ± 0.6 on the right and 1.4 ± 0.6 on the left eye significantly (p<0.001) to 0.3 ± 0.4 and 0.2 ± 0.4 on the right and the left eyes. The Ocular Surface Disease Index (OSDI) questionnaire score indicating the subjective complaints of the patients also decreased from a mean value of 36.2 ± 25.3 to 15.6 ± 16.7 (p<0.001). In this study, the artificial tear, Conheal decreased the grade of the conjunctivochalasis significantly after one month of regular use already, from the LIPCOF degree 3, considered as indication of conjunctival surgery, to a LIPCOF degree 2 or lower requiring a conservative therapy. Our results raise the possibility that vision-related quality of life can be significantly improved by conservative therapies even in severe conjunctivochalasis

    Intra-arterial induction high-dose chemotherapy with cisplatin for oral and oropharyngeal cancer: long-term results

    Get PDF
    Intra-arterial (IA) chemotherapy for curative treatment of head and neck cancer experienced a revival in the last decade. Mainly, it was used in concurrent combination with radiation in organ-preserving settings. The modern method of transfemoral approach for catheterisation, superselective perfusion of the tumour-feeding vessel, and high-dose (150 mg m−2) administration of cisplatin with parallel systemic neutralisation with sodium thiosulphate (9 g m−2) made preoperative usage feasible. The present paper presents the results of a pilot study on a population of 52 patients with resectable stage 1–4 carcinomas of the oral cavity and the oropharynx, who were treated with one cycle of preoperative IA chemotherapy executed as mentioned above and radical surgery. There have been no interventional complications of IA chemotherapy, and acute side effects have been low. One tracheotomy had to be carried out due to swelling. The overall clinical local response has been 69%. There was no interference with surgery, which was carried out 3–4 weeks later. Pathological complete remission was assessed in 25%. The mean observation time was 3 years. A 3-year overall and disease-free survival was 82 and 69%, respectively, and at 5 years 77 and 59%, respectively. Survival results were compared to a treatment-dependent prognosis index for the same population. As a conclusion, it can be stated that IA high-dose chemotherapy with cisplatin and systemic neutralisation in a neoadjuvant setting should be considered a feasible, safe, and effective treatment modality for resectable oral and oropharyngeal cancer. The low toxicity of this local chemotherapy recommends usage especially in stage 1–2 patients. The potential of survival benefit as indicated by the comparison to the prognosis index should be controlled in a randomised study
    • …
    corecore