436 research outputs found
Improved perfluoroalkylether fluid development
The feasibility of transforming a commercial linear perfluoroalkylether fluid into a material stable in the presence of metals and metal alloys in oxidizing atmospheres at 300 C without the loss of the desirable viscosity temperature characteristics was determined. The approach consisted of thermal oxidative treatment in the presence of catalyst to remove weak links, followed by transformation of the created functional groups into phospha-s-triazine linkages. It it found that the experimental material obtained in 66% yield from the commercial fluid exhibits, over an 8 hr period at 300 C in the presence of Ti(4Al, 4Mn) alloy, thermal oxidative stability better by a factor of 2.6x1000 based on volatiles evolved than the commercial product. The viscosity and molecular weight of the developed fluid are unchanged and are essentially identical with the commercial material. No metal corrosion occurs with the experimental fluid at 300 C
Differential entropy analysis of the IDEA block cipher
This paper describes a new cryptanalytic technique that combines differential cryptanalysis with Shannon entropy. We call it differential entropy (DE). The objective is to exploit the non-uniform distribution of output differences from a given mapping as a distinguishing tool in cryptanalysis. Our preferred target is the IDEA block cipher, since we detected significantly low entropy at the output of its multiplication operation. We looked to further extend this entropy analysis to larger components and for a number of rounds. We present key-recovery attacks on up to 2.5-round IDEA in the single-key model and without weak-key assumptions. © 2013 Elsevier B.V. All rights reserved
Gravitational and electroweak unification by replacing diffeomorphisms with larger group
The covariance group for general relativity, the diffeomorphisms, is replaced
by a group of coordinate transformations which contains the diffeomorphisms as
a proper subgroup. The larger group is defined by the assumption that all
observers will agree whether any given quantity is conserved. Alternatively,
and equivalently, it is defined by the assumption that all observers will agree
that the general relativistic wave equation describes the propagation of light.
Thus, the group replacement is analogous to the replacement of the Lorentz
group by the diffeomorphisms that led Einstein from special relativity to
general relativity, and is also consistent with the assumption of constant
light velocity that led him to special relativity. The enlarged covariance
group leads to a non-commutative geometry based not on a manifold, but on a
nonlocal space in which paths, rather than points, are the most primitive
invariant entities. This yields a theory which unifies the gravitational and
electroweak interactions. The theory contains no adjustable parameters, such as
those that are chosen arbitrarily in the standard model.Comment: 28 pages
Evaluation of Degradation Inhibitors in Poly(Hexafluoropropene Oxide) Fluids
The action of various alloys: 440C steel, M-50 steel, Pyrowear 675, Cronidur 30 and Ti(4Al,4Mn); the effect of decradation inhibitors: mono- and diphospha-s-triazines, diphosphatetraazacyclooctatetraene, phosphate esters, phosphate/ diester rust inhibiting mixtures, and a phosphine were evaluated in two poly(hexafluoropropene oxide) fluids (143AC and 16256). The degradation promoting action of the ferrous alloys in 16256 fluid were comparable; Ti(4Al,4Mn) alloy was significantly more detrimental. The overall rating of the additives was: phosphates (greater than) phosphate/diester mixture (greater than) phosphine (greater than or equal to) phospha-s-triazines. The 16256 fluid was less responsive to additive inhibition than 143AC. Phosphate esters were fully effective over 24 hour exposure in the 16256/440C steel and the 16256/Ti(4Al,4Mn) systems at 330 C. In general, the phosphine was less effective in the presence of ferrous alloys than the phosphates and phospha-s-triazines
Noncyclic geometric phase and its non-Abelian generalization
We use the theory of dynamical invariants to yield a simple derivation of
noncyclic analogues of the Abelian and non-Abelian geometric phases. This
derivation relies only on the principle of gauge invariance and elucidates the
existing definitions of the Abelian noncyclic geometric phase. We also discuss
the adiabatic limit of the noncyclic geometric phase and compute the adiabatic
non-Abelian noncyclic geometric phase for a spin 1 magnetic (or electric)
quadrupole interacting with a precessing magnetic (electric) field.Comment: Plain Latex, accepted for publication in J. Phys. A: Math. Ge
An Efficient Representation of Euclidean Gravity I
We explore how the topology of spacetime fabric is encoded into the local
structure of Riemannian metrics using the gauge theory formulation of Euclidean
gravity. In part I, we provide a rigorous mathematical foundation to prove that
a general Einstein manifold arises as the sum of SU(2)_L Yang-Mills instantons
and SU(2)_R anti-instantons where SU(2)_L and SU(2)_R are normal subgroups of
the four-dimensional Lorentz group Spin(4) = SU(2)_L x SU(2)_R. Our proof
relies only on the general properties in four dimensions: The Lorentz group
Spin(4) is isomorphic to SU(2)_L x SU(2)_R and the six-dimensional vector space
of two-forms splits canonically into the sum of three-dimensional vector spaces
of self-dual and anti-self-dual two-forms. Consolidating these two, it turns
out that the splitting of Spin(4) is deeply correlated with the decomposition
of two-forms on four-manifold which occupies a central position in the theory
of four-manifolds.Comment: 31 pages, 1 figur
Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge
We define the {\it rest-frame instant form} of tetrad gravity restricted to
Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of
gauge transformations generated by the 14 first class constraints of the
theory, we define and solve the multitemporal equations associated with the
rotation and space diffeomorphism constraints, finding how the cotriads and
their momenta depend on the corresponding gauge variables. This allows to find
quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal
gauges and to find the Dirac observables for superspace in these gauges.
The construction of the explicit form of the transformation and of the
solution of the rotation and supermomentum constraints is reduced to solve a
system of elliptic linear and quasi-linear partial differential equations. We
then show that the superhamiltonian constraint becomes the Lichnerowicz
equation for the conformal factor of the 3-metric and that the last gauge
variable is the momentum conjugated to the conformal factor. The gauge
transformations generated by the superhamiltonian constraint perform the
transitions among the allowed foliations of spacetime, so that the theory is
independent from its 3+1 splittings. In the special 3-orthogonal gauge defined
by the vanishing of the conformal factor momentum we determine the final Dirac
observables for the gravitational field even if we are not able to solve the
Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted
to this completely fixed gauge.Comment: RevTeX file, 141 page
Cardiovascular magnetic resonance in patients with pectus excavatum compared with normal controls
<p>Abstract</p> <p>Purpose</p> <p>To assess cardiothoracic structure and function in patients with pectus excavatum compared with control subjects using cardiovascular magnetic resonance imaging (CMR).</p> <p>Method</p> <p>Thirty patients with pectus excavatum deformity (23 men, 7 women, age range: 14-67 years) underwent CMR using 1.5-Tesla scanner (Siemens) and were compared to 25 healthy controls (18 men, 7 women, age range 18-50 years). The CMR protocol included cardiac cine images, pulmonary artery flow quantification, time resolved 3D contrast enhanced MR angiography (CEMRA) and high spatial resolution CEMRA. Chest wall indices including maximum transverse diameter, pectus index (PI), and chest-flatness were measured in all subjects. Left and right ventricular ejection fractions (LVEF, RVEF), ventricular long and short dimensions (LD, SD), mid-ventricle myocardial shortening, pulmonary-systemic circulation time, and pulmonary artery flow were quantified.</p> <p>Results</p> <p>In patients with pectus excavatum, the pectus index was 9.3 ± 5.0 versus 2.8 ± 0.4 in controls (P < 0.001). No significant differences between pectus excavatum patients and controls were found in LV ejection fraction, LV myocardial shortening, pulmonary-systemic circulation time or pulmonary flow indices. In pectus excavatum, resting RV ejection fraction was reduced (53.9 ± 9.6 versus 60.5 ± 9.5; P = 0.013), RVSD was reduced (P < 0.05) both at end diastole and systole, RVLD was increased at end diastole (P < 0.05) reflecting geometric distortion of the RV due to sternal compression.</p> <p>Conclusion</p> <p>Depression of the sternum in pectus excavatum patients distorts RV geometry. Resting RVEF was reduced by 6% of the control value, suggesting that these geometrical changes may influence myocardial performance. Resting LV function, pulmonary circulation times and pulmonary vascular anatomy and perfusion indices were no different to controls.</p
Yang-Mills Theory as a Deformation of Topological Field Theory, Dimensional Reduction and Quark Confinement
We propose a reformulation of Yang-Mills theory as a perturbative deformation
of a novel topological (quantum) field theory. We prove that this reformulation
of the four-dimensional QCD leads to quark confinement in the sense of area law
of the Wilson loop. First, Yang-Mills theory with a non-Abelian gauge group G
is reformulated as a deformation of a novel topological field theory. Next, a
special class of topological field theories is defined by both BRST and
anti-BRST exact action corresponding to the maximal Abelian gauge leaving the
maximal torus group H of G invariant. Then we find the topological field theory
() has a hidden supersymmetry for a choice of maximal Abelian gauge. As a
result, the D-dimensional topological field theory is equivalent to the
(D-2)-dimensional coset G/H non-linear sigma model in the sense of Parisi and
Sourlas dimensional reduction. After maximal Abelian gauge fixing, the
topological property of magnetic monopole and anti-monopole of four-dimensional
Yang-Mills theory is translated into that of instanton and anti-instanton in
two-dimensional equivalent model. It is shown that the linear static potential
in four-dimensions follows from the instanton--anti-instanton gas in the
equivalent two-dimensional non-linear sigma model obtained from the
four-dimensional topological field theory by dimensional reduction, while the
remaining Coulomb potential comes from the perturbative part in
four-dimensional Yang-Mills theory. The dimensional reduction opens a path for
applying various exact methods developed in two-dimensional quantum field
theory to study the non-perturbative problem in low-energy physics of
four-dimensional quantum field theories.Comment: 58 pages, Latex, no figures, version accepted for publication in
Phys. Rev. D (additions of Discussion, references and minor changes
- âŠ