167 research outputs found

    Association between depression and diabetes in the South-Eastern zone of the state of Uttar Pradesh-India: A cross-sectional study

    Get PDF
    Background: Depression is among the most common mental health problems among people with chronic complications like type 2 diabetes mellitus is brought on by flaws in insulin secretion and activity; however, genetic factors also play a role in both insulin resistance and beta-cell failure, but environmental factors also play a role in aggravating both problems. The presence of depression in patients with type 2 diabetes may interfere with treatment and efficacy. This study aimed to determine the prevalence of depression in this metabolic variant clinical condition, type 2 diabetes mellitus, in major tertiary care hospitals in the South-Eastern Uttar Pradesh cities of Allahabad and Varanasi. Subjects and methods: For this study, 206 subjects with type 2 diabetes mellitus from rural and urban areas were recruited. Demographic, clinical, and diabetes-related data were collected using a semi-structured questionnaire. Depression was assessed using the Patient Health Questionnaire 9 (PHQ9), a standardized questionnaire developed in the United States and validated in the Indian population. Results: The prevalence of depression in diabetics in the community was 43.2%. The most common type of depression was mild (29.3%, 26), and the least common was severe depression (3, 3.37%). Several factors were associated with depression in the female gender: living in a rural area, unemployment, and being single. The complications of diabetes and other chronic conditions, such as hypertension and obesity, are also associated with depression. Conclusion: Depression was found to be particularly high in the study population. Because depression can significantly impede patient adherence to treatment, there is an urgent need for early diagnosis and treatment. This requires integrating mental health care for diabetes patients

    Dynamics of Stripes in Doped Antiferromagnets

    Get PDF
    We study the dynamics of the striped phase, which has previously been suggested to be the ground state of a doped antiferromagnet. Starting from the t-J model, we derive the classical equation governing the motion of the charged wall by using a ficticious spin model as an intermediate step. A wave-like equation of motion is obtained and the wall elasticity and mass density constants are derived in terms of the t and J parameters. The wall is then regarded as an elastic string which will be trapped by the pinning potential produced by randomly distributed impurities. We evaluate the pinning potential and estimate the threshold electric field which has to be applied to the system in order to release the walls. Besides, the dynamics of the stripe in the presence of a bias field below the threshold is considered and the high- and low-temperature relaxation rates are derived.Comment: 22 pages, RevTeX, 3 PS-figure

    Charge-Stripe Ordering From Local Octahedral Tilts: Underdoped and Superconducting La2-xSrxCuO4 (0 < x < 0.30)

    Full text link
    The local structure of La2-xSrxCuO4, for 0 < x < 0.30, has been investigated using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data. The local octahedral tilts are studied to look for evidence of [110] symmetry (i.e., LTT-symmetry) tilts locally, even though the average tilts have [010] symmetry (i.e., LTO-symmetry) in these compounds. We argue that this observation would suggest the presence of local charge-stripe order. We show that the tilts are locally LTO in the undoped phase, in agreement with the average crystal structure. At non-zero doping the PDF data are consistent with the presence of local tilt disorder in the form of a mixture of LTO and LTT local tilt directions and a distribution of local tilt magnitudes. We present topological tilt models which qualitatively explain the origin of tilt disorder in the presence of charge stripes and show that the PDF data are well explained by such a mixture of locally small and large amplitude tilts.Comment: 11 two-column pages, 11 figure

    Lattice anisotropy as microscopic origin of static stripes in cuprates

    Full text link
    Structural distortions in cuprate materials offer a microscopic origin for anisotropies in electron transport in the basal plane. Using a real-space Hartree-Fock approach, we consider the ground states of the anisotropic Hubbard (t_x \ne t_y) and t-J (t_x \ne t_y, J_x \ne J_y) models. Symmetrical but inhomogeneous (``polaronic'') charge structures in the isotropic models are altered even by rather small anisotropies to one-dimensional, stripe-like features. We find two distinct types of stripe, namely uniformly filled, antiphase domain walls and non-uniform, half-filled, in-phase ones. We characterize their properties, energies and dependence on the model parameters, including filling and anisotropy in t (and J). We discuss the connections among these results, other theoretical studies and experimental observation.Comment: 18 pages, 16 figures, 8 table

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Phospholipid Composition Modulates Carbon Nanodiamond-Induced Alterations in Phospholipid Domain Formation

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la504923j.The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected
    corecore