5,138 research outputs found

    High Temperature Composite Analyzer (HITCAN) demonstration manual, version 1.0

    Get PDF
    This manual comprises a variety of demonstration cases for the HITCAN (HIgh Temperature Composite ANalyzer) code. HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. HITCAN is written in FORTRAN 77 computer language and has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. Detailed description of all program variables and terms used in this manual may be found in the User's Manual. The demonstration includes various cases to illustrate the features and analysis capabilities of the HITCAN computer code. These cases include: (1) static analysis, (2) nonlinear quasi-static (incremental) analysis, (3) modal analysis, (4) buckling analysis, (5) fiber degradation effects, (6) fabrication-induced stresses for a variety of structures; namely, beam, plate, ring, shell, and built-up structures. A brief discussion of each demonstration case with the associated input data file is provided. Sample results taken from the actual computer output are also included

    High temperature composite analyzer (HITCAN) user's manual, version 1.0

    Get PDF
    This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank

    High Temperature Composite Analyzer (HITCAN) Programmer's Manual. Version 1.0

    Get PDF
    This manual describes the organization and flow of data and analysis modules in the computer code, HITCAN (High Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This manual describes the architecture of the HITCAN code, followed by the listing of subroutines and calling tree, data storage scheme, file system, and a dictionary of code terminology. The primary intention of the manual is to familiarize the user with some of the computer program related issues so as to facilitate maintenance/modification/updates of the HITCAN computer code

    METCAN updates for high temperature composite behavior: Simulation/verification

    Get PDF
    The continued verification (comparisons with experimental data) of the METCAN (Metal Matrix Composite Analyzer) computer code is updated. Verification includes comparisons at room and high temperatures for two composites, SiC/Ti-15-3 and SiC/Ti-6-4. Specifically, verification of the SiC/Ti-15-3 composite includes comparisons of strength, modulus, and Poisson's ratio as well as stress-strain curves for four laminates at room temperature. High temperature verification includes comparisons of strength and stress-strain curves for two laminates. Verification of SiC/Ti-6-4 is for a transverse room temperature stress-strain curve and comparisons for transverse strength at three temperatures. Results of the verification indicates that METCAN can be used with confidence to simulate the high temperature nonlinear behavior of metal matrix composites

    Current-Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A Bottom-up Perspective

    Full text link
    By generalizing the classical linear response theory of stick percolation to nonlinear regime, we find that the drain current of a Nanobundle Thin Film Transistor (NB-TFT) is described under a rather general set of conditions by a universal scaling formula ID = A/LS g(LS/LC, rho_S * LS * LS) f(VG, VD), where A is a technology-specific constant, g is function of geometrical factors like stick length (LS), channel length (LC), and stick density (rho_S) and f is a function of drain (VD) and gate (VG) biasing conditions. This scaling formula implies that the measurement of full I-V characteristics of a single NB-TFT is sufficient to predict the performance characteristics of any other transistor with arbitrary geometrical parameters and biasing conditions

    METCAN verification status

    Get PDF
    The status of the verification (comparisons of predictions with experimental data) of the METCAN (METal-matrix Composite ANalyzer) code at high temperature is summarized. Verification includes select available room temperature of W/Cu composites for different fiber volume ratios. It also includes high temperature properties for thermal expansion, moduli, strength and stress/strain behavior for SiC/Ti composites. Furthermore it includes limited cases for thermal fatigue strength degradation. The verification results summarized herein indicate that METCAN simulates complex high temperature metal matrix composite bahavior with reasonable accuracy and that it can be used with confidence to identify in-situ nonlinear behavior that influences composite properties

    Demonstration of capabilities of high temperature composites analyzer code HITCAN

    Get PDF
    The capabilities a high temperature composites analyzer code, HITCAN which predicts global structural and local stress-strain response of multilayered metal matrix composite structures, are demonstrated. The response can be determined both at the constituent (fiber, matrix, and interphase) and the structure level and includes the fabrication process effects. The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interactive constituent material behavior model. Various features of the code are demonstrated through example problems for typical structures
    corecore