49723

High Temperature Composite Analyzer (HITCAN) User's Manual
 Version 1.0

J.J. Lackney and S.N. Singhal Sverdrup Technology, Inc. Lewis Research Center Group Brookpark, Ohio
and
P.L.N. Murthy and P. Gotsis
Lewis Research Center
Cleveland, Ohio

April 1993

$$
\begin{aligned}
& \text { (NASA-TM-106002) HIGH TEMPERATURE } \\
& \text { N93-25070 } \\
& \text { COMPOSITE ANALYZER (HITCAN) USERS } \\
& \text { MANUAL, VERSION } 1.0 \text { (NASA) } 180 \text { D }
\end{aligned}
$$

TABLE OF CONTENTS

Page
ABSTRACT ABST1

1. INTRODUCTION INTRO1
2. CAPABILITIES AND LIMITATIONS CAP/LIM1
3. INPUT FORMAT INPUT1
3.1 Geometric Modeling INPUT6
3.2 Element Type INPUT37
3.3 Type of Analysis INPUT42
3.4 Material Data INPUT57
3.5 Types of Loading INPUT69
3.6 Boundary Conditions INPUT85
3.7 Output Control INPUT90
3.8 Program Option Cards INPUT95
3.9 Data Bank INPUT102
4. EXECUTION PROCEDURE ON THE LeRC CRAY X-MP AND Y-MP EXEPRO1
5. OUTPUT DESCRIPTION OUTPUT1
6. EXAMPLE PROBLEMS EXAMP1
REFERENCES REF1

Abstract

This manual describes "how to use" the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers.

This manual describes HITCAN's capabilities and limitations followed by input/ execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.

HITCAN User's Manual - Version I. 0

CHAPTER 1

INTRODUCTION

The potential use of High Temperature Metal Matrix Composite (HTMMC) materials in propulsion systems has already been recognized. The advantages of HTMMC materials are high operational temperatures, high specific moduli and strengths, tailorable properties, dimensional stability, and hygral resistance. The thermomechanical properties of components made from HTMMC materials exhibit a nonlinear dependence on parameters such as temperature, stress, and stress rate. Since comprehensive experimental investigations are prohibitive in cost, it is advantageous to have computational schemes which can simulate the nonlinear response of components made from HTMMC materials.

Research related to various aspects of HTMMC materials and structures has been conducted at NASA Lewis Research Center (LeRC) for several years. This work has focused on high temperature material behavior, constitutive law development, MMC experimental mechanics, mathematical modeling, and nonlinear structural analysis and simulation. Building upon this research effort, a HIgh Temperature Composites ANalyzer (HITCAN), has been developed.

HITCAN is a general purpose computer program for predicting global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures both at the constituent (fiber, matrix, and interphase) and the structural level. The thermo-mechanical properties of the constituent materials are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure uses the finite element method, which employs an incremental direct iteration procedure to solve the nonlinear equations. A schematic of this approach is shown in Figure 1.1.

HITCAN includes:

- a dedicated mesh generator, adapted from COBSTRAN (Reference 1);
- capability for simulating nonlinear behavior at all levels of composite material, adapted from METCAN (Reference. 2);
- finite element structural analysis, adapted from MHOST (Reference 3).

All three computer programs, COBSTRAN, METCAN, and MHOST were developed in-house at NASA and are used as modules. This makes HITCAN a modular stand-alone code, independent of commercial codes.

HITCAN, written in the FORTRAN 77 language, has been configured and executed on the LeRC CRAY XMP and YMP computer systems. The code is made up of approximately 16,000 lines. The companion codes residing in the HITCAN library, COBSTRAN, METCAN, and MHOST consist of approximately 7000, 10000, and 51000 lines, respectively.

```
HITCAN User's Manual - Version I. 0
```


Figure 1.1: HITCAN: An Integrated Approach for High Temperature Composite Structural Analysis

```
HITCAN User's Manual - Version I. 0
```

After a brief description of the capabilities and limitations in the HITCAN computer code, a step-by-step outline of the procedure necessary to utilize HITCAN, i. e., the preparation of the input data and the creation of a databank of constituent material properties and parameters, is given. Chapter 3 describes the input data file preparation. The shell scripts which are required to compile and run HITCAN on the CRAY X-MP and Y-MP are described in Chapter 4. A description of the output is given in Chapter 5. Finally, in Chapter 6, the input for three example problems is explained.

The potential user of HITCAN is reminded that the program is in a state of ongoing development and the methodology which HITCAN comprises is of an evolutionary nature.

The structure of the input/output file structures in HITCAN is shown in Figure 1.2 .

Figure 1.2: HITCAN/Input/Output File Structure

HITCAN User's Manual - Version I. 0

CHAPTER 2

CAPABILITIES AND LIMITATIONS

HITCAN is capable of predicting global structural and local stress-strain response of multilayered HTMMC structures exhibiting nonlinear material behavior. Each layer of the composite can be constructed of different materials and can be arbitrarily oriented. The constitutive model employed in METCAN is specifically designed for HTMMC, therefore it is recommended that HITCAN be used only for metal matrix composites.

The current version of the code is based on a rectilinear coordinate system. Arbitrary shaped geometries can be modeled using interpolators included in the mesh generation module of the code.

At the present time, the following analyses are available in HITCAN:

- Incremental static analysis with nonlinear anisotropic material behavior
- Dynamic analysis using direct time integration
- Modal analysis (free vibration)
- Buckling analysis (first critical buckling load)

The element library includes 3 four-noded elements, i.e. plate, plane stress, and plane strain, and 1 eight noded element, i.e. a 3 D solid. The current mesh generation capability of the code allows modeling of solid structures using any of the 4 types of elements. The user may also input a finite element model directly. The code is capable of handling a variety of boundary conditions, loadings (centrifugal, concentrated, distributed, pressure, temperature, static, transient, cyclic, and impact), and various types of structures (such as beam, plate, ring, curved panel, and built-up structures). A list of HITCAN's analysis capabilities can be found in Table 2.1.

The limitations of the code are :

- Formulation assumes small displacement and small strain theory;
- Elements of different types cannot be combined;
- Hollow structures can be modeled using the plate element only;
- The finite element model generated by HITCAN can have a nonuniform mesh only along the x-axis;
- If the curvature is large, the mesh will not be uniform.

HITCAN presents analysis results at the global, laminate, and ply levels. Results include displacements, reactions, stresses, and modes shapes. The code also has the capability to generate post-processing files for PATRAN.

Type of Analysis 7 Type of Element-	Plate	Plane Strain	Plane Stress	8-Node
Static	tested	-	-	tested
Buckling (a)	tested	-	-	-
Load Stepping	tested	-	-	tested
Modal (Natural Vibration Modes) (b)	tested	-	-	-
Time-domain	-	-	-	-
Loading				
Mechanical	tested			tested
Thermal	tested			tested
Cyclic	-	-	-	-
Impact	-	-	-	-
Constitutive Models (c) $P=\text { Constant }$	tested	-	-	tested
$P=f(T) \quad$ (temperature dependence)	tested	-	-	tested
$P=f(\sigma) \quad$ (stress dependence)	tested	-	-	tested
$P=f(\sigma) \quad$ (stress rate dependence)	tested	-	-	tested
$P=f(t) \quad$ (creep)	-	-	-	-
$P=f(T \dot{\sigma}, \sigma ; \sigma) \quad$ (combination)	tested	-	-	tested
$P=f(T o, \sigma, \sigma, t)$ (creep combination)	-	-	-	-
Fiber Degradation	tested	-	-	tested
Fabrication-induced Stresses	tested	-	-	tested
Ply Orientations Arbitrary	tested	-	-	tested
(a) Tested 1 buckling mode (b) Tested 4 vibration modes (c) Constitutive models: P : Material propertie T: Temperature	otation $\stackrel{\sigma}{\dot{\sigma}}:$ t :	ess rate		

Table 2.1: HITCAN Capabilities for Composite Materials

HITCAN User's Manual - Version I. 0

CHAPTER 3

INPUT FORMAT

A single HITCAN input file includes all the data necessary for the selection of analysis options, parameters, mesh generation, composite material type and construction, loading, initial conditions, boundary conditions, and print options. However, the values of material properties at the constituent (fiber, matrix, and interphase) level are not entered in the HITCAN input file, they reside in a separate file, labeled "data bank". This file contains material property data for each of the composite systems used in the analysis. Each composite system is identified with a material name which is entered in the HITCAN input file. The user can edit the "data bank" file to define material property data for any material required. Additional information on the "data bank" file can be found in Section 3.8.

The input file consists of two blocks. The first block contains the title and the program option cards. The second block consists of card groups. Figure 3.1 illustrates the two blocks. The program option cards either control the flow through the program or activate various card groups. There are twenty-eight program option cards, four of these control the flow through the program. They are HPLATE, S3DSOLID, and SPLATE option cards which set the type of finite element model to be generated by HITCAN, and the READ IN MODEL option which enables the user to input into HITCAN a finite element model consisting of eight node solid elements. One of these four cards must be included in the "Program Option Cards" block of the input deck. If the program option card HPLATE is specified then the following program option cards must be included in the input file

PLATE PLYORDER ENDOPTION

If SPLATE is used, the program option cards required in the input file are
PLATE or STRESS or STRAIN
PLYORDER
ENDOPTION
When the S3DSOLID is specified, then
BRICK
PLYORDER
ENDOPTION
must be used.
Chapter 3
March, 1992

hitcan User's Manual - Version I. 0

To separate the two blocks the ENDOPTION card is used. This program option card is placed at the end of the "Program Option Cards", as shown in Figure 3.1.
hITCAN User's Manual - Version I. 0

Figure 3.1: Organization of Input File in HITCAN

```
HITCAN User's Manual - Version I.0
```

A card group is a set of one or more cards. Some of the card groups are dependent on either a program option card being specified or a parameter defined in a previous card group. These optional card groups and their respective dependencies are explained within each card group in Section 3.3. If an optional card group is not activated by a previous program option card or user selected parameter, the optional card group must not be included in the input file. The input file should, however, be maintained in numerical order by card group number.

The input file can be broken into 7 functions. These are shown in Figure 3.2. In sections 3.1 to 3.7 , the program option cards and card groups used in each one of these functions will be described. By depicting the input file in this manner, the user can quickly assemble an input file. In section 3.9 a summary of all the program option cards is given.

Note that in both the input file and the "data bank" file English units are required.

Figure 3.2: Input File Functions

March, 1992

HITCAN User's Manual - Version I. 0

3.1 GEOMETRIC MODELING

HITCAN generates a finite element mesh of the structure, based on coordinates of a few representative points. This is accomplished by interpolating nodal values of geometrical coordinates using a cubic spline. The interpolating function requires that the surface geometry be represented by a continuous and singlevalued function. Although HITCAN is a stand-alone computer program, it does create a PATRAN neutral file, so that the user can view the mesh generated. Figure 3.3 shows the different types of structures that can be modeled by HITCAN. There are 3 distinct mesh generation schemes in HITCAN, as categorized below. Any 1 of the 3 mesh generation schemes is activated by choosing the appropriate program option card, shown in the parentheses below.
(1) For solid structures: use plate, plane stress, or plane strain element (SPLATE).
(2) For hollow structures (panel structure): use plate element (HPLATE).
(3) For solid structures: use 3D solid element (S3DSOLID).

The coordinate system must be rectilinear and right-handed. The center of the coordinate system can be placed anywhere. However, in choosing the directions of the three axes, the user should keep it in mind that the mesh can be nonuniform only along the x-axis.

Also, HITCAN provides the user with the ability to enter a finite element model created by a program other than HITCAN. At the present time, this option can only be used with the eight-node solid element. This option can be activated with the program option card READ IN MODEL.

The following table summarizes the different mesh generation schemes and their program option cards and card groups.

TYPE OF STRUCTURE	PROGRAM OPTION CARD	CARD GROUPS
Solid structure using plane stress, plane strain, or plate element	SPLATE	
Hollow structures	HPLATE	27
		2
Solid structures		9
using eight-node	S3DSOLID	24
solid element		4
Read in a finite	READ IN MODEL	26
element model		3

HITCAN User's Manual - Version I. 0

Figure 3.3: Typical Structures That Can Be Modeled Using HITCAN

HITCAN User's Manual - Version I. 0

SPLATE MODEL OPTION

The SPLATE model option allows modeling of structures with arbitrary shapes in x and y directions, but a through-the-thickness plate type shape in the z direction. An example of the type of structure that can be model with HITCAN is a solid curved panel shown in Figure 3.4. The finite element mesh is generated in the following 4 steps.

Step 1: A right-handed rectilinear coordinate system (x, y, z) is defined, placing the center of the coordinate system at a convenient point.

Step 2: To obtain the surface geometry of a structure, it must be divided into several (y, z) sections along the x-axis. The number of cross sections selected along the x-axis depends upon the curvature of the structure along the x-axis. The mesh generator can fit any curve up to a third degree polymonial, using a cubic spline. Hence, the x-axis must be divided into enough sections such that each section can be modeled using a cubic spline.

Step 3: Each (y, z) cross section along the x-axis consists of a set of points. The number of (y, z) points needed to define a specific cross section are selected so that the curve between the two adjacent points can be modeled using a cubic spline interpolator. A different number of (y, z) points can be selected for different cross sections, along the x -axis.

Step 4: Once the structure is divided into cross sections,along the x axis in steps 2 and 3 above, the user has already created a coarse finite element mesh. To further subdivide the x and (y, z) sections for obtaining the desired number of elements, the user needs only to input the number of intermediate nodes. The nodal coordinates for the intermediate nodes of the finite element mesh are automatically interpolated.

Figure 3.4: A Shell Structure Modeled Using The SPLATE Option in HITCAN

HITCAN User's Manual - Version I. 0

Note that (y, z) coordinates in each cross section can be input in 2 different ways, as follows:
(1) For each y point, two values of the z-coordinate, for the upper and the lower surface, must be input (see Figure 3.5). The thickness and the mid-surface of the structure are automatically calculated by the code. This option is activated by entering a value of 1 or 2 for the variable IGRD. The geometry modeling data are input through variables $X, Y, Z U$, and $Z L$ for each cross section.
(2) For each y point, one value of the z-coordinate, for the mid-plane of the structure and the structure thickness must be input (see figure 3.5). The upper and the lower surfaces of the structure are automatically calculated by the code. This option is activated by inputting a value of 3 or 4 for the variable IGRD. The geometry modeling data are input through the variables X, Y, Z, and $T B$ for each cross section.

HITCAN User's Manual - Version I. 0

Figure 3.5: Input Options For The SPLATE Model Cption

Note that by setting IGRD equal to 1 or 4 , HITCAN will divide the model into IU-1 elements along the x-axis and JU-1 elements along the y-axis using a cubic spline interpolating function. With IGRD having a value of 2 or 3 , the input points are assumed to be the nodes and the variables $\mathrm{X}, \mathrm{Y}, \mathrm{ZL}, \mathrm{ZU}, \mathrm{Z}$, and TB are nodal quantities. HITCAN will automatically generate the element connectivities. These variables are illustrated in the Figure 3.6 on the following page.

Program Option card:	SPLATE MODEL
Card Groups:	5 and 27
Columns \quad Format	Variable Name

1st card in card group 5
1-4 14 NSECT

2nd card in card group 5

| $1-4$ | I4 |
| :--- | :--- | :--- |

5-8 I4 IU
$\begin{array}{lll}9-12 & \text { I4 JU }\end{array}$

The number of input cross sections. A sufficient number must be used so that the surface geometry can be properly represented by a cubic spline. Note, if the surface is linear only two points are needed. The coordinates of the points are entered below, using $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{ZL}, \mathrm{ZU}$, and TB.

Sets the input format. If IGRD is set to 1 or 4 , a finite element mesh will be generated. Setting IGRD equal to 2 or 3 the input points will be assumed to be nodes of a finite element mesh, the element connectivity will then be automatically created.

For IGRD equal to 1 or 4 , the number of nodes in the finite element model along the x -axis. With IGRD set to 2 or 3 , IU is the number of nodes that are input along the x -axis; i. e., IU is equal to NSECT.

For IGRD equal to 1 or 4 , the number of nodes in the finite element model along the y-axis. With IGRD set to 2 or 3 , JU is the number of nodes that are input along the y-axis; i.e., $J U$ is equal to MSECT.

SHELL INPUT GEOMETRY

FINITE ELEMENT MODEL OF SHELL

Figure 3.6: Variables Used In The SPLATE Model Option

		IITCAN User	Manual - Version I. 0
Columns	Format	Variable Name	Entry
3 rd card in card group 5			
1-8	F8. 4	XBEG	The initial x coord. of structure, use if IGRD $=1$ or 4
9-16	F8. 4	XEND	The final x coord. of structure, use if IGRD $=1$ or 4
1st card in card group 27			
1-80	2014	MSECT	Number of input points at each cross section. If IGRD is equal to 2 or 3 , then the number of input points must be the same for each cross section.
2nd card in card group 27			
1-4	I4	NXDIV	Number of elements between two consecutive output sections
3 rd card in card group 27			
1-8	F8. 4	X	X coordinate of an input point
9-16	F8. 4	Y	Y coordinate of an input point
17-24	F8. 4	2 or ZU	If IGRD $=1$ or 2 , use $Z U$. $Z U$ is the Z coordinate of the upper surface. If IGRD = 3 or 4 , use Z. Z is the Z coordinate of the mid-plane.
25-32	F8. 4	TB or ZL	If $I G R D=1$ or 2 , use $Z L$. $Z L$ is the Z coordinate of the lower surface. If IGRD $=$ 3 or 4 , use TB . Tb is the wall thickness.

One block of data for each input cross section. Each block will contain MSECT(J) cards of card 非3 and 1 card of card 非2. The coordinates of each input point will be on one card. The total number of cards will be MSECT(1) + MSECT(2) +... + $\operatorname{MSECT}(I)+N S E C T$, where $I=1, N S E C T$.

EXAMPLE：
In this example，the input required for a plate of length 4 in．，of width 2 in．， and a thickness of 0.1 in ．is given．In the finite element mesh there will be 4 elements along the x －axis and 4 elements along the y －axis．

Card Group 5

1	2	3	4	5	6
1．．．．．．．． 0 ．		0.	0.		
2					
444					
0.0	4.0				
Card Group 27					
1	2	3	4	5	6
1．．．．．．．．． 0.				． 0	
22					
3					
0.0	－1．0	0.0	0.1		
0.0	1.0	0.0	0.1		

0

4.0	-1.0	0.0	0.1
4.0	1.0	0.0	0.1

Columns	Field Name	Value	Description
1－4	NSECT	1	There is 2 input sections．
1－4	IGRD	4	Since IGRD equals $=4$ ，a finite element model will be created．
5－8	IU	4	Number of nodes along the x －axis．
9－12	JU	4	Number of nodes along the y －axis．
1－8	XBEG	0.0	The initial x coordinate of the plate．
9－16	XEND	4.0	The final x coordinate of the plate．
$1-4$	NXDIV	3	Number of elements between the lst and 2nd output sections．
1－10	X	0.0	section 非1．
11－20	Y	－1．0	Y coordinate of input point 非 of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 1 . ~$
21－30	Z	0.0	Z coordinate of input point 非 of input section \＃1．
31－40	TB	0.1	The thickness of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 1$ of input section 非．
1－10	X	0.0	X coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 1．
11－20	Y	1.0	Y coordinate of input point 非 of input section 非1．

HITCAN User＇s Manual－Version 1.0

Columns	Field Name	Value	Description
21－30	Z	0.0	Z coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ of input section 非．
31－40	TB	0.1	The thickness of input point \＃2 of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ ．
1－4	NXDIV	0	
1－10	X	4.0	X coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ 囗 十 一 ~ o f ~ i n p u t ~$ section \＃2．
11－20	Y	－1．0	Y coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 1$ of input section \＃2．
21－30	z	0.0	section \＃2．
$31-40$	TB	0.1	The thickness of input point \＃1 of input section 非2．
1－10	X	4.0	X coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ ．
11－20	Y	1.0	Y coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ 2 of input section \＃2．
21－30	2	0.0	2 coordinate of input point \＃2 of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ 2．
31－40	TB	0.1	The thickness of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ of input section \＃2．

HPLATE MODEL OPTION
The HPLATE model option allows modeling of hollow sandwich type structures with different shaped top and bottom plates, joined by multiple different sized plate type spars. Figure 3.7 shows an example of this type of structure. The top and bottom plates can have arbitrary shapes in x and y directions. The spars are defined as plates with faces in the x, z plane and thickness in the y-direction, joining the top and bottom plates, at user-specified points. Note if the spars in the structure are evenly spaced, then the program option card PANEL must also be specified.

HITCAN assumes the nodal input points are on the outer surface of the shell. HITCAN automatically corrects the grid point positions by moving them to the midwall position in a direction normal to the surface. The program option card will suppress this mid-wall correction and will retain the grid points on the external profile of the shell.

The finite element mesh is generated in the following steps.
Step 1: A right-handed rectilinear coordinate system (x, y, z) is defined, placing the center of the coordinate system at a convenient point.

Step 2: The basic shape of the top and bottom plates is divided into cross sections ((y, z) planes), definable with cubic splines. The number of cross sections selected along the x-axis depends upon the curvature of the structure along the x-axis. The curvature along the x-axis can be different for the top and bottom plates of the sandwich structure. This must be kept in mind when selecting the number of cross sections.

Step 3: Each cross section ((y,z) plane) consist of input points. The number of (y, z) input points needed to define a specific cross section are again selected so that the curve between the two adjacent points can be modeled using a cubic spline interpolator. A different number of (y, z) input points can be selected for different cross sections and for the top and bottom surfaces.

Step 4: The desired nodal point coordinates are automatically interpolated, by defining the number of elements desired between each output section and the number of elements desired along the y-axis. The spars are divided into same number of elements along the x-axis as the top and the bottom plates. The spars can only consist of one element in the y and z directions.

Figure 3.8 illustrates several of the variables used in the HPLATE model option. Program Option card:

HITCAN User's Manual - Version I. 0

PANEL STRUCTURE

IDEALIZED MODEL OF PANEL STRUCTURE

Figure 3.7: A Panel Structure Modeled Using The HPLATEOption in HITCAN

HITCAN User's Manual - Version I. 0

Figure 3.8: Variabies Used In The HPLATEModel Option

3rd card in card group 24

1-10	F10.4	SY(1)	Y coordinate of spar as measured from the left edge of the structure
11-20	F10.4	SY(2)	Wall thickness of spar
21-30	F10.4	SY(1)	Y coordinate of spar as measured from the left edge of the structure
31-40	F10. 4	SY(2)	Wall thickness of spar
41-50	F10.4	SY(1)	Y coordinate of spar as measured from the left edge of the structure
51-60	F10. 4	SY(2)	Wall thickness of spar
61-70	F10.4	SY(1)	Y coordinate of spar as measured from the left edge of the structure
71-80	F10.4	SY(2)	Wall thickness of spar
Cards	3 are	ted NSE	times
4th ca	card	24	
1-80	2014	MSECT	An array containing the number of input points for each input cross section. This is for the top surface.

5th card of card group 24
$1-802014$ MSECT

An array containing the number of input points for each input cross section. This is for the top surface.

6th card in card group 24

$1-8$	F8.4	X
9-16	F8.4	Y
$16-24$	F8.4	Z
$25-32$	F8.4	THK

X coordinate of an input point on the top
surface
Y coordinate of an input point on the top
surface
Z coordinate of an input point on the top
surface
Wall thickness of an input point on the top
surface

```
    HITCAN User's Manual - Version I.O
This card is repeated MSECT(1,1) + MSECT(2,1), +...+ MSECT(I,1),
where I = 1,LSECT(1).
7th card in card group 24
\begin{tabular}{|c|c|c|c|}
\hline 1-8 & F8. 4 & X & X coordinate of an input point on the top surface \\
\hline 9-16 & F8. 4 & Y & \(Y\) coordinate of an input point on the top surface \\
\hline 16-24 & F8. 4 & Z & \(Z\) coordinate of an input point on the top surface \\
\hline 25-32 & F8. 4 & THK & Wall thickness of an input point on the top surface \\
\hline
\end{tabular}
This card is repeated \(\operatorname{MSECT}(1,2)+\operatorname{MSECT}(2,2),+\ldots+\operatorname{MSECT}(I, 2)\), where \(I=1, L S E C T(2)\).
```


HITCAN User's Manual - Version I. 0

EXAMPLE:

In this example, the input is given for a panel. The length of the panel is 0.5 in., the width is 0.2 in., and the height of the panel is 0.075 in. The panel has 2 spars one on each end. Each spar has a thickness of 0.02 in.

Card Group 2

Card Group 9

1	2	3	4	5	6
1........ 0	0	0	0	0.	0
22					

Card Group 24

22
22

.0	-.1	.04	.02
.0	.1	.04	.02
.5	-.1	.04	.02
.5	.1	.04	.02
.0	-.1	.035	.01
.0	.1	.035	.01
.5	-.1	.035	.01
.5	.1	.035	.01

Columns		Field Name	Val
$1-4$		NSECT	
$5-8$		NXSPAR	2
$9-12$		NSPAR	2
$13-16$		NYSPC	7
$1-4$		LSECT (1)	2
$5-8$		LSECT (2)	2
			2
$1-4$		NSPDES (1)	1

Description

Number of output sections is 1.
Both output sections are to contain spars. Number of spars is 2.
Number of elements along the Y-axis
The top surface is described by 2 input sections.
The bottom surface is described by 2 input sections.
Spar \#1 is described by ply designation 非1.

HITCAN User's Manual - Version I. 0

Columns	Field Name	Value
5-8	NSPDES (2)	1
1-4	NXSPC	4
5-10	XH	0.0
1-10	SY(1)	0.0
11-20	SY(2)	0.02
21-30	SY(1)	0.2
31-40	SY(2)	0.02
1-4	NXSPC	0
5-10	XH	0.0
1-10	SY(1)	0.0
11-20	SY(2)	0.02
21-30	SY(1)	0.2
31-40	SY(2)	0.02
1.4	MSECT (1)	2
5-8	MSECT (2)	2
1-4	MSECT (1)	2
5-8	MSECT (2)	2
1-10	X	0.0
11-20	Y	-. 1
21-30	z	0.04
31-40	THK	0.02
1-10	X	0.5
11-20	Y	0.1
21-30	Z	0.04
31-40	THK	0.02
1-10	X	0.5
11-20	Y	-. 1
21-30	z	0.04
31-40	THK	0.02

March, 1992

Columns	Field Name	Value
1－10	X	0.0
11－20	Y	0.1
21－30	Z	0.04
31－40	THK	0.02
1－10	X	0.0
11－20	Y	－． 1
21－30	2	0.035
31－40	THK	0.02
1－10	X	0.0
11－20	Y	0.1
21－30	Z	0.035
31－40	THK	0.01
1－10	X	0.5
11－20	Y	－． 1
21－30	Z	0.035
31－40	THK	0.01
1－10	X	0.5
11－20	Y	0.1
21－30	Z	0.035
31－40	THK	0.01

Description

X coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2, ~$ at input section \＃2 on the top surface．
Y coordinate of input point \＃2 at input section 非2 on the top surface． Z coordinate of input point \＃2 at input section 非2 on the top surface． Wall thickness of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2 at input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ on the top surface． x coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 1$ at input section \＃1 on the bottom surface． Y coordinate of input point \＃1 at input section 非1 on the bottom surface． Z coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ 囗 十 一 ~ a t ~ i n p u t ~$ section 非1 on the bottom surface． Wall thickness of input point 非1 at input section 非 1 on the bottom surface． X coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2 at input section $⿰ ⿰ 三 丨 ⿰ 丨 三 11$ on the bottom surface． Y coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ 2 at input section 非1 on the bottom surface． Z coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2 at input section 非1 on the bottom surface．
 section 非2 on the bottom surface． X coordinate of inpt point $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ 1 ~ a t ~ i n p u t ~$ section 非2 on the bottom surface． Y coordinate of input point \＃1 at input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ on the bottom surface． Z coordinate of input point 非 at input section 非2 on the bottom surface． Wall thickness of input point \＃1 at input secttion 非2 on the bottom surface．
X coordinate of input point 非2 at input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ on the bottom surface．
 section $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ 2 on the bottom surface． Z coordinate of input point $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 2 ~ a t ~ i n p u t ~$ section $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ on the bottom surface． Wall thickness of input point 非2 at input section 非2 on the bottom surface．

HITCAN User's Manual - Version I. 0

S3DSOLID MODEL OPTION

This model option enables the user to create a finite element model of a solid structure using 3D solid elements. Figure 3.9 shows an example of the type of structure that can be modeled using this model option. The finite element mesh is generated in the following steps.

Step 1: A right-handed rectilinear coordinate system (x, y, z) is defined, placing the center of the coordinate system at a convenient point on the structure.

Step 2: The basic shape of the structure is divided into input planes. As shown in the Figure 3.10, a quarter of a ring that was broken into two input planes. One input plane represents the inside surface of the ring, the other the outside surface of the ring. The number of input planes used will depend upon the curvature of the structure along the z-axis. A sufficient number must be provided so that a cubic spline can be used.

Step 3: Each input plane is separately divided into several sets of input points. The number of sets used must be sufficient so that the curvature in the input plane can be represented by a cubic spline. The number of sets of points for each input plane can be different; likewise, the number of points in each set can be different.

Step 4: The desired nodal point coordinates are automatically interpolated, by defining the number of elements desired between each output section, the number of elements along the y -axis, and the number of elements along the z -axis.

Figure 3.9: A Ring Modeled Using The S3DSOLID Option In HITCAN

```
HITCAN User's Manual - Version I.O
```


Figure 3.10: Input Planes For One Quarter Of A Ring

1st card of card group 26

$1-4$	I4	NXSPC
$5-10$	F6.2	X

2nd card of card group 26

1-80 $20 I 4$ LSECT

3rd card of card group 26
1-80
2014
MSECT
An array containing the number of input points for each set of input points.

Card \#3 is repeated NIPL times.
4 th card of card group 26
1-8
9-16
17-24
F8. 4
X
F8. 4
Y
F8.4 Z

This card is repeated as follows. One block of data for each input plane, i.e.,

HITCAN User's Manual - Version I. 0

NIPL blocks of data. Each block will contain LSECT sets of points, with each set containing MSECT input points. Thus for input plane 非, card 非4 is repeated $\operatorname{MSECT}(1)+\operatorname{MSECT}(2)+\ldots+\operatorname{MSECT}(I)$ times, where $\mathrm{I}=1, \operatorname{LSECT}(2)$.

```
HITCAN User＇s Manual－Version I． 0
```


EXAMPLE：

The input for a sector of a ring is shown in this example．The inside radius of the ring is 2.875 in ．and the outside radius of the ring is 3.475 ．

Card Group 4

Card Group 26

Columns	Field Name	Value
1－4	NIPL	2
5－8	NOSC	3
9－12	NEYY	3
13－16	NETT	6
1－4	NXSPC	2
5－10	X	0.0
1－4	NXSPC	0
5－10	X	0.6
1－4	LSECT（1）	2
5－8	LSECT（2）	2
1－4	MSECT（1）	2
5－8	MSECT（2）	2

Description

Number of input planes．
Number of output sections．
Number of elements along the Y－axis． Number of elements through the thickness． Number of elements between output sections \＃1 and 非2．
X coordinate of the lst output section．
X coordinate of the 2nd output section．
Number of input sections on input plane 非． Number of input sections on input plane 非2． Number of input points in the lst set of input points of input plane \＃1．
Number of input points in the 2 nd set of input points of input plane 非．

Columns	Field Name	Value
1－4	MSECT（1）	2
5－8	MSECT（2）	2
1－8	X	0.0
9－16	Y	0.0
17－24	2	2.875
1－8	X	0.0
9－16	Y	0.1
17－24	z	2.873
1－8	X	0.6
9－16	Y	0.0
17－24	z	2.875
1－8	x	0.6
9－16	Y	0.1
17－24	z	2.873
1－8	X	0.0
9－16	Y	0.0
17－24	2	3.475
1－8	X	0.0
9－16	Y	0.121
17－24	2	3.473
1.8	X	0.6
9－16	Y	0.0
17－24	z	3.475

Description

Number of input points in the lst set of input points of input plane \＃2．
Number of input points in the 2nd set of input points of input plane \＃2．
X coordinate of point $\# 1$ in the 1st set of input points on plane \＃1． Y coordinate of point \＃1 in the 1st set of input points on plane \＃1． z coordinate of point 非1 in the lst set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 灬 丶 . ~ . ~$ x coordinate of point \＃2 in the 1st set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 1$.
Y coordinate of point $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ in the lst set of input points on plane \＃1． 2 coordinate of point $\# 2$ in the 1st set of input points on plane 非．
 input points on plane 非．
 input points on plane 非．
 input points on plane 非．
X coordinate of point $\# 2$ in the 2nd set of input points on plane 非．
Y coordinate of point $\# 2$ in the 2 nd set of input points on plane \＃1．
z coordinate of point $\# 2$ in the 2 nd set of input points on plane \＃1．
 input points on plane 非2．
Y coordinate of point \＃1 in the lst set of input points on plane \＃2．
Z coordinate of point \＃1 in the lst set of input points on plane 非2．
X coordinate of point $\# 2$ in the 1st set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ ．
Y coordinate of point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ 2 in the 1st set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ ．
z coordinate of point $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ in the lst set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ ．
X coordinate of point $\# 1$ in the 2nd set of input points on plane \＃2．
 input points on plane \＃2． Z coordinate of point 非1 in the 2nd set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ ．

HITCAN User＇s Manual－Version I． 0

Columns	Field Name	Value	Description
1－8	X	0.6	X coordinate of point \＃2 in the 2nd set of
			input points on plane \＃2．
9－16	Y	0.121	Y coordinate of point \＃2 in the 2nd set of input points on plane $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ ．
17－24	2	3.473	z coordinate of point 非2 in the 2nd set of input points on plane \＃2．

```
HITCAN User's Manual - Version I.0
```

READ IN MODEL
This option allows the user to input a finite element model using eight－node solid elements．The user must provide the element connectivities and the nodal coordinates．When this option is chosen，the user must also specify the BRICK program option card．

Program option cards：	READ IN MODEL and BRICK
Card groups：	3 and 25

Columns Format \quad Variable \quad Name Entry

1st card in card group \＃3

1－4	I4	MAXNP	Number of nodes in the finite element model．
5－8	I4	NETOT	Number of elements in the finite element model．
1st	card	非25	
1－4	I4	IELE	Element number．
5－36	814	KEI	Element connectivity．See description of the solid element for the correct order of the nodes in the element connectivity．

Card 非1 is repeated NETOT times．
2nd card in card group $⿰ ⿰ 三 丨 ⿰ 丨 三 25$

$1-5$	I5	NNUM	Node number．
$6-10$	5 X		
$11-20$	F10．4	X	X coordinate．
$21-30$	F10．4	Y	Y coordinate．
$31-40$	F10．4	Z	Z coordinate．

Card 非2 is repeated MAXNP times

```
HITCAN User's Manual - Version I.O
```


EXAMPLE：

Card Group 3

Card Group 25

Columns	Field Name	Value	Description
1－4	MAXNP	8	Number of nodes is 8.
5－8	NETOT	1	Number of elements is 1.
1－4	IELE	1	Designation number of element \＃1．
5－8	KEI（1）	1	1st node in the element connectivity．
9－12	KEI（1）	2	2nd node in the element connectivity．
13－16	KEI（1）	3	3 rd node in the element connectivity．
17－20	KEI（1）	4	4 th node in the element connectivity．
21－24	KEI（1）	5	5 th node in the element connectivity．
25－28	KEI（1）	6	6 th node in the element connectivity．
29－32	KEI（1）	7	7 th node in the element connectivity．
32－36	KEI（1）	8	8 th node in the element connectivity．
1－5	NNUM	1	Node number for node ⿰⿰三丨⿰丨三一1．
11－20	X	1.0	X coordinate of node 非1．
21－30	Y	1.0	Y coordinate of node 非1．
31－40	2	0.0	Y coordinate of node \＃1．
1－5	NNUM	2	Node number for node \＃2．
11－20	X	0.0	X coordinate of node $⿰ ⿰ 三 丨 ⿰ 丨 三$ 2．
21－30	Y	1.0	Y coordinate of node \＃2．
31.40	z	0.0	Y coordinate of node 非2．
1.5	NNUM	3	Node number for node 非3．
11－20	X	0.0	X coordinate of node 非3．
21－30	Y	1.0	Y coordinate of node 非3．
31－40	2	1.0	Y coordinate of node 非3．
1－5	NNUM	4	Node number for node $⿰ ⿰ 三 丨 ⿰ 丨 三 4$ ．

HITCAN User＇s Manual－Version I． 0

Golumns	Field Name	Value	Description
11－20	X	1.0	X coordinate of node $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4$ ．
21－30	Y	1.0	Y coordinate of node \＃4．
31－40	2	1.0	Y coordinate of node \＃4．
1－5	NNUM	5	Node number for node \＃5．
11－20	X	1.0	X coordinate of node \＃5．
21－30	Y	0.0	Y coordinate of node $\# 5$ ．
31－40	2	0.0	Y coordinate of node $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5．
1－5	NNUM	6	Node number for node 非6．
11－20	X	0.0	X coordinate of node $\# 6$ ．
21－30	X	0.0	Y coordinate of node $⿰ ⿰ 三 丨 ⿰ 丨 三^{6}$ ．
31－40	2	0.0	Y coordinate of node \＃6．
1－5	NNUM	7	Node number for node 非7．
11－20	X	0.0	X coordinate of node $⿰ ⿰ 三 丨 ⿰ 丨 三$ 7．
21－30	Y	0.0	Y coordinate of node 非7．
31－40	2	1.0	Y coordinate of node \＃7．
1－5	NNUM	8	Node number for node $⿰ ⿰ 三 丨 ⿰ 丨 三$ 8．
11－20	X	1.0	X coordinate of node \＃8．
21－30	Y	0.0	Y coordinate of node \＃8．
31－40	2	1.0	Y coordinate of node \＃8．

```
HITCAN User's Manual - Version I.O
```


3.2 ELEMENT TYPE

There are four types of elements available in HITCAN, a plane stress element, a plane strain element, a plate element, and eight-node solid element. These elements are activated by program option cards. The table below lists the available elements and their corresponding program option cards.

ELEMENT TYPE	PROGRAM OPTION CARD
Eight-Node Solid	BRICK
Four-Node Plate	PLATE
Plane Stress	STRAIN
Plane Strain	STRESS

HITCAN User's Manual - Version I. 0

BRICR

When this option is specified, a 8-node isoparametric 3D solid element will be used. This option card is to be used in conjunction with the S3DSOLID and the READ IN MODEL option cards. This element has 3 translational degrees of freedom identified by u_{x}, u_{y}, and u_{z}, as shown in Figure 3.11 .

Figure 3.11: Eight-Node Solid Element

```
HITCAN User's Manual - Version I.O
```


PLATE

This option selects the four-node isoparametic plate element both for the solid (SPLATE model option) and the hollow (HPLATE model option) structures. This element, which was derived from the Reissner-Mindlin theory for plates and shells, has 6 degrees-of-freedom at each node. These degrees-of-freedom are identified by $u_{x}, u_{y}, u_{z}, H_{x}, H_{y}$, and H_{z}. This element is shown in Figure 3.12.

Figure 3.12: Plate Element

```
HITCAN User's Manual - Version I.O
```


STRAIN

This option specifies, that a four-node isoparametic plane strain element will be used in the analysis. Each node within this element has 2 degrees-of-freedom, identified by u_{x} and u_{y}. This element is shown in Figure 3.13.

Figure 3.13: Plane Strain Element

HITCAN User's Manual - Version I. 0

STRESS

This option specifies, that a four-node isoparametic plane stress element will be used in the analysis. Each node within this element has 2 degrees-of-freedom, identified by u_{x} and u_{y}. This element is shown in Figure 3.14.

Figure 3.14: Plane Stress Element

3.3 TYPE OF ANALYSIS

There are four types of analyses available in HITCAN:

- Incremental static analysis with nonlinear anisotropic material behavior
- Dynamic analysis using direct time integration
- Modal analysis (free vibration)
- Buckling analysis (first critical buckling load).

The code will assume an incremental static analysis, unless the program option card DYNAMIC is specified. Note that for the static analysis no program option card or card groups are required. If a dynamic analysis is chosen by the user, four additional sets of data can be entered. They are:

- Initial accelerations at selected nodes
- Damping coefficients
- Initial displacements at selected nodes
- Initial velocities at selected nodes.

One of the most features of HITCAN is it's capability to generate a restart file. This feature is useful in two ways.
By using this feature the user can make several small runs instead of one large run, thus reducing turn around time. Secondly, if HITCAN fails to converge, a restart file is automatically generated. This enables the user to then continue the analysis at a smaller load increment.

The table below lists the analyses and the restart feature with their corresponding program option card and card groups.

TYPE OF ANALYSIS	OPTIONS	PROGRAM OPTIONS CARDS	CARD GROUPS
Static Dynemic		DYNAMIC	13
	Initiol	ACCEIERATION	22
			39
	Demping	DAMP	14
	Initial	DISPLACEMENT	20
	Displacemente		37
	Initial	VElocrir	21
	Volocity		38
Buckling			11
		BUCKL	44
Modal		MODAL	11
			43
Rostart		RESTART	10

HITCAN User's Manual - Version I. 0

DYNAMIC ANALYSIS

This option activates the direct time integration dynamic analysis. The integration scheme used is the Newmark-Beta method. For a description of this method, see Reference 7.

Program option cards:	DYNAMIC	
Card group:		
Columns	Format	Variable
1 Name card		Entry
$1-4$	I4	INCDYN

EXAMPLE:
Card Group 13

Columns	Field Name Value	Description	
$1-4$	INCDYN	1	The material properties will be updated every load increment.

INITIAL ACCELERATION

This option enables the user to specify initial acceleration, at user-selected nodal points, for the direct time integration analysis. If this option is not specified, the initial accelerations are set to 0 .

\left.| Program option card: | | ACCELERATION |
| :--- | :--- | :--- |
| Card groups: | | 22 and 39 |$\right)$

lst card of card group 22
1-4 I4 NACC Number of acceleration data sets. Each data set can specify acceleration for all degrees of freedom at several nodal points with equal increment in their node numbers.

Ist card of card group 39

$1-4$	I4	IBEG	The first node number in this set of nodes.
$5-8$	I4	IEND	The last node in this set of nodes.
$9-12$	I4	INCR	Increment at which the node numbers are incremented.

2nd card of card group 39

1-10	F10.4	ACELIN(1)	Initial acceleration for the lst degree-offreedom for this set of nodes.
11-20	F10.4	ACELIN (2)	Initial acceleration for the 2nd degree-offreedom for this set of nodes.
21-30	F10.4	ACELIN (3)	Initial acceleration for the 3rd degree-offreedom for this set of nodes.
$31-40$	F10.4	$\operatorname{ACELIN}(4)$	Initial acceleration for the 4 th degree-offreedom for this set of nodes.
41-50	F10.4	ACELIN (5)	Initial acceleration for the 5th degree-offreedom for this set of nodes.
51.60	F10.4	ACELIN (6)	Initial acceleration for the 6th degree-offreedom for this set of nodes.

These two cards are repeated NACC times.

hitcan User's Manual - Version I. 0

EXAMPLE:
Card Group 22

1	2	3	4	5	6
1........ 0	. 0	0	0	0	
1					

Card Group 39

1	2	3	4	5	6
1........ 0	0	0	0	0	
47					
10.0	0.0	0.0	0.0	0.0	0.0

Columns	Field Name	Value	Description
1-4	NACC	1	Number of initial acceleration data sets is 1.
1-4	IBEG	4	The lst node in this series of nodes is 1.
5-8	IEND	7	Last node in this series of nodes is 7.
9-12	INCR	1	Increment at which the node numbers are incremented is 1.
1-10	ACELIN (1)	10.0	The 1st degree-of-freedom has an initial acceleration of $10.0 \mathrm{in} . / \mathrm{sec} .^{2}$
11-20	ACELIN (2)	0.0	The 2nd degree-of-freedom has an initial acceleration of $0.0 \mathrm{in} . / \mathrm{sec} .^{2}$
21-30	ACELIN (3)	0.0	The 3rd degree-of-freedom has an initial acceleration of $0.0 \mathrm{in} . / \mathrm{sec} .^{2}$
$31-40$	ACELIN (4)	0.0	The 4 th degree-of-freedom has an initial acceleration of $0.0 \mathrm{in} . / \mathrm{sec} .^{2}$
41-50	ACELIN(5)	0.0	The 5th degree-of-freedom has an initial acceleration of 0.0 in. $/ \mathrm{sec} .^{2}$
51-60	ACELIN (6)	0.0	The 6th degree-of-freedom has an initial acceleration of $0.0 \mathrm{in} . / \mathrm{sec} .^{2}$

HITCAN User's Manual - Version I. 0

DAMPING

This option defines damping for the direct time integration analysis. At the present time, only Rayleigh damping is available in HITCAN. Thus damping matrix [C] is of the form

$$
[C]=a[M]+B[K],
$$

where a is the damping coefficient of the mass matrix [M] and B is the damping coefficient of the stiffness matrix [K].

Program option card: DAMP
Card group:
14

Columns	Format	Variable Name	Entry
1st card			
$1-8$	F8.4	DAMPMS	Damping coefficient for the mass matrix.
$9-16$	F8.4	DAMPST	Damping coefficient for the stiffness matrix.

INITIAL DISPLACEMENT

This option enables the user to specify initial displacement, at user-selected nodal points, for the direct time integration analysis. If this option is not specified, the initial displacements are set to 0 .

Program option card:
 DISPLACEMENT

Card groups:
20 and 37

Columns Format | Variable |
| :--- |
| Name |

1st card of card group 20

$1-4$ NDIS	Number of displacement data sets. Each data set can specify displacement for all degrees of freedom at several nodal points with equal increment in their node numbers.

lst card of card group 37

$1-4$	I4	IBEG	The first node number in this set of nodes.
$5-8$	I4	IEND	The last node in this set of nodes.
$9-12$	I4	INCR	Increment at which the node numbers are incremented.

2nd card of card group 37

$1-10$	F10.4	DISPIN(1)	Initial displacement for the 1st degree-of- freedom for this set of nodes.
11-20	F10.4	DISPIN(2)	Initial displacement for the 2nd degree-of- freedom for this set of nodes.
21-30	F10.4	DISPIN(3)	Initial displacement for the 3rd degree-of- freedom for this set of nodes.
31-40	F10.4	DISPIN(4)	Initial displacement for the 4th degree-of- freedom for this set of nodes. Initial displacement for the 5th degree-of-
$51-60$	F10.4	DISPIN(5)	Inita freedom for this set of nodes. Initial displacement for the 6th degree-of- freedom for this set of nodes.

These two cards are repeated NDIS times.

HITCAN User's Manual - Version I. 0

EXAMPLE:

Card Group 22

1	2	3	4	5	6
1........ 0	0		0	0	

1

Card Group 39

1	2	3	4	5	6
1214					
0.0	0.0	5.0	0.0	0.0	0.0

Columns	Field Name	Value	Description
1-4	NACC	1	Number of initial acceleration data sets is 1 .
1-4	IBEG	12	The lst node in this series of nodes is 1.
5-8	IEND	14	Last node in this series of nodes is 14.
9-12	INCR	2	Increment at which the node numbers are incremented is 2.
1-10	DISPIN(1)	0.0	The ist degree-of-freedom has an initial displacement of 0.0 in .
11-20	DISPIN(2)	0.0	The 2nd degree-of-freedom has an initial displacement of 0.0 in .
21-30	DISPIN(3)	5.0	The 3rd degree-of-freedom has an initial displacement of 5.0 in .
31-40	DISPIN(4)	0.0	The 4 th degree-of-freedom has an initial displacement of 0.0 in .
41-50	DISPIN(5)	0.0	The 5th degree-of-freedom has an initial displacement of 0.0 in .
51-60	DISPIN(6)	0.0	The 6th degree-of-freedom has an initial displacement of 0.0 in .

```
HITCAN User's Manual - Version I.O
```


INITIAL VELOCITY

This option enables the user to specify initial velocities, at user-selected nodal points, for the direct time integration analysis. If this option is not specified, the initial velocities are set to 0 .

Program option card:
Card groups:

VELOCITIES
21 and 38

Columns Format | Variable |
| :--- |
| Name \quad Entry |

1st card of card group 21
1-4 I4 NVEL Number of velocity data sets. Each data set can specify the velocity for all degrees of freedom at several nodal points with equal increment in their node numbers.

1st card of card group 38

$1-4$	I4	IBEG	The first node number in this set of nodes.
$5-8$	I4	IEND	The last node in this set of nodes.
$9-12$	I4	INCR	Increment at which the node numbers are incremented.

2nd card of card group 38

1-10	F10.4	VELOIN(1)	Initial velocity for the lst degree-offreedom for this set of nodes.
11-20	F10.4	VELoin (2)	Initial velocity for the 2nd degree-offreedom for this set of nodes.
21-30	F10.4	VELOIN(3)	Initial velocity for the 3rd degree-offreedom for this set of nodes.
31-40	F10.4	VELOIN(4)	Initial velocity for the 4th degree-of freedom for this set of nodes.
41-50	F10.4	VELOIN(5)	Initial velocity for the 5th degree-offreedom for this set of nodes.
51-60	F10.4	VELOIN(6)	Initial velocity for the 6th degree-offreedom for this set of nodes.

These two cards are repeated NVEL times.

HITCAN User's Manual - Version I. 0

EXAMPLE:

Card Group 21

Card Group 38

Columns	Field Name	Value	Description
1-4	NVEL	1	Number of initial velocity data sets is 1.
1-4	IBEG	4	The lst node in this series of nodes is 1 .
5-8	IEND	7	Last node in this series of nodes is 7.
9-12	INCR	1	Increment at which the node numbers are incremented is 1 .
1-10	VELOIN(1)	10.0	The 1 st degree-of-freedom has an initial velocity of $1.0 \mathrm{in} . / \mathrm{sec}$.
11-20	VELOIN(2)	0.0	The 2nd degree-of-freedom has an initial velocity of $0.0 \mathrm{in} . / \mathrm{sec}$.
21-30	VELOIN(3)	0.0	The 3rd degree-of-freedom has an initial velocity of $0.0 \mathrm{in} . / \mathrm{sec}$.
31-40	VELOIN(4)	0.0	The 4 th degree-of-freedom has an initial velocity of $0.0 \mathrm{in} . / \mathrm{sec}$.
Columns	Field Name	Value	Description
41-50	VELOIN(5)	0.0	The 5th degree-of-freedom has an initial velocity of $0.0 \mathrm{in} . / \mathrm{sec}$.
51-60	VELOIN(6)	0.0	The 6th degree-of-freedom has an initial velocity of $0.0 \mathrm{in} . / \mathrm{sec}$.

```
HITCAN User's Manual - Version I.O
```


BUCKLING ANALYSIS

This option activates the buckling analysis. To determine the critical buckling load, MHOST uses the subspace iteration method. For a description of this method, see Reference 7. When this option is used, a buckling analysis is performed at the initial load and the times specified in the array TIMEMB.

Program option card:
Card groups:
BUCKLE
11 and 44

Columns Format \quad| Variable |
| :--- |
| Name \quad Entry |

lst card of card group 11

$1-4$	I4	NEIGV	Number of critical buckling modes to be extracted. At the present time this value should be set to 1.
$5-8$	I4	NSUBD	Number of subspace dimensions for the eigenvalue extraction. A sufficient
dimension is reserved as a default.			

2nd card of card group 11
1-8 F8.2 RESID The allowable tolerance in MHOST. The default value is 5.0 .

1st card of card group 43
1-10 F10.6 TIMEMB Times at which a buckling analysis is desired. A maximum of 8 times are allowed.

HITCAN User's Manual - Version I. 0

EXAMPLE:
Card Group 11

1........	1	2	3	4	5	6	
	1.......0.........0.........0..........0.......... 0.						
15.0							

Card Group 43

1	2	3	4	5	6
1. 0	. 0	. 0	0	0	0
10.0					

Columns	Field Name	Value	Description
1-4	NEIGV	1	Must be set to 1.
5-8	NSUBD	0	The default value is used.
9-12	MHITER	10	The allowable number of iterations in MHOST is set to 10 .
1-8	RESID	5.0	The allowable tolerance in MHOST is set 5.0 .
1-10	TIMEMB	10.0	A buckling analysis is desired at 10 sec .

HITCAN User's Manual - Version I. 0

MODAL ANALYSIS

When this option is used HITCAN will perform a free vibration dynamic analysis to determine the frequencies and the mode shapes. To determine the frequencies and the mode shapes, MHOST uses the subspace iteration method. For a description of this method, see Reference 7.

Program option card:
Card groups:
MODAL
11 and 43

Variable
Columns Format Name Entry
lst card of card group 11

$1-4$	I4	NEIGV	Number of modes to be extracted. At the present time this value should be set to 1.
$5-8$	I4	NSUBD	Number of subspace dimensions for the eigenvalue extraction. A sufficient
dimension is reserved as a default.			

2nd card of card group 11
1-8 F8.2 RESID

1st card of card group 43
1-10 F10.6 TIMEMS Times at which a modes are to be extracted. A maximum of 8 times are allowed.

```
HITCAN User's Manual - Version I.0
```


EXAMPLE:

Card Group 11

Card Group 43

1	2	3	4	5	6
1....... 0 .	0	0	0	0	
5.0					

Columns	Field Name	Value	Description
1-4	NEIGV	1	Must be set to 1.
5-8	NSUBD	0	The default value is used.
9-12	SHITER	10	The allowable number of iterations in MHOST is set to 10.
1-8	RESID	5.0	The allowable tolerance in MHOST is set 5.0.
1-10	TIMEMB	10.0	A buckling analysis is desired at 5 sec .

HITCAN User's Manual - Version I. 0

RESTART

This feature enables the user to conduct an analysis in several runs, an useful option for large problems. When the RESTART option is specified, a restart file created in a previous run is input. This file contains the necessary information to continue the analysis, including, the load step number, increment number, ply stresses, microstresses, microstress rates, material failure flags, and nodal displacements. For a restart run, the input is the same as before, except that RESTART is now specified in the program option cards.

A restart file is created by specifying the variable MSTART. MSTART is the number of increments to be preformed in a particular run. After the analysis has progressed through MSTART increments, a restart file is created and the run is terminated. Note that a restart file will also be created when the maximum number of allowable iterations (the variable MITER) in HITCAN is exceeded. Note that card group $\# 10$ must be entered whether or not the program option card RESTART is specified.

Program option card:	RESTART
Card group:	10

Columns Format | Variable |
| :--- |
| Name Entry |

1st card in card group 10

1-4	I4	NTISTP NMECH	Number of load steps. Number of mechanical cycles used in METCAN to account for cyclic damage (used for
I4-12	I4	NTHER	fatigue analysis). Number of thermal cycles used in METCAN to account for cyclic damage (used for fatigue
analysis)			

HITCAN User's Manual - Version I. 0

EXAMPLE:
Card Group 10

Columns	Field Name	Value		Description		
$1-4$		NTISTP	1			Number of load steps is 1.
:---	:---					

```
HITCAN User's Manual - Version I.O
```


3.4 MATERIAL DATA

In this section, the necessary program option cards and card groups used in building the composite model from constituent properties are described. The user builds the composite model by defining the plies over the surface of the structure and through the thickness. This produces an integrated laminated model of the entire structure.

The user has the flexibility of selecting the number of plies, the ply thickness, the fiber volume ratio, the void volume ratio, and the fiber orientation in building either a symmetric or an unsymmetric ply layup. When PLYORDER is used in conjunction with the program option card, UNSYMMETRICAL, the user can generate an unsymmetric ply layup. However, when the HPLATE model option is specified, only symmetric ply layups can be used.

Each ply is referred to by a designation number determined by the order in which it is listed in the input. A different ply designation number must be assigned if any one or more of the following variables; material properties, ply thickness, fiber volume ratio, void volume ratio, and fiber orientation, are different. However, a ply used more than once, but with same value to all of these variables, can be assigned only one ply designation number.

For a symmetric ply layup, the ply order is assumed to be from the bottom surface of the structure to the mid-thickness line moving in the positive y or z directions. This order is then reversed and the ply layup is then continued from the mid-thickness line to the opposite surface of the wall. If the ply layup is unsymmetric, i. e., the program option card UNSYMMETRICAL is specified, the ply layup is input in two parts. The first part is the ply layup from the bottom surface of the structure to the mid-thickness line moving in the positive y or z directions. The second part is the ply order from the opposite surface to the mid-thickness line moving in the negative y or z directions.

The ply orientation angle, measured in degrees, is defined from the HITCAN global x-axis to be positive in the positive $x-y$ quadrant for the SPLATE, HPLATE, S3DSOLID, and READ IN MODEL options. For the spars of the HPLATE model option the angle is positive in the positive $x-z$ quadrant. Figure 3.15 illustrates the composite geometry relative to the HITCAN coordinate system. Note at the present time only one ply description is allowed for each spar. A sufficient number of these plies will be generated to fill the spar thickness. The orientation of the fibers in these plies will be along the x-axis.

To account for the existence of a discrete interphase between the fiber and the matrix, the user is allowed to enter the interphase thickness as a fraction of the fiber diameter. This is done by specifying the program option card INTERPHASE and entering value of the variable PINTER in card group 23.

In creating this section of input, the card groups 1 and 28 must always be specified. These two card groups contain the necessary data to describe the plys. The program option cards PLYORDER and UNSYMMETRICAL can be used only with the model options HPLATE, SPLATE, and S3DSOLID. For the model option READ IN MODEL, the user must use card groups 12 and 31 . The table below summarizes the program option cards and card groups used in this section.

	PROGRAM OPTION CARDS	CARD GROUPS	COMMENTS
Ply Description Data		1 28	This data is needed for all model options.
Symmetrical Ply Order	PLYORDER	$\begin{gathered} 6 \\ 29 \end{gathered}$	Use for SPLATE, HPLATE, \& S3DSOLID model options.
Unsymmetrical Ply Order	PLYORDER UNSYMMETRICAL	7 30	Use for SPLATE, \& S3DSOLID model options.
Ply Layup Specified at Each Node		8 12 31	Use for the model option READ IN model.
Interphase Data	INTERFACE	23	Used only if an interface between the fiber and matrix is to be modelled.

```
HITCAN User's Manual - Version I.0
```


Figure 3.15: Fiber Composite Geometry Relative To HITCANCoordinate System

HITCAN User's Manual - Version I. 0

PLY DESCRIPTION CARDS

These cards contain the necessary data to describe each unique ply in the structure. These card groups are required for all model options.

Program option card:
None
1 and 28
Variable
Columns Format Name Entry
lst card in card group 1
1-4 I4 NDES Number of ply descriptions.
lst card in card group 28

1-10	F10.4	PERT(1)	Initial thickness (percent of thickness at each input point). Final thickness (percent of thickness at each
11-20	F10.4	PERT(2)	Finput point). $1-30$
F10.4	PERT(3)	Initial x coordinate (percent length). 41-50	F10.4
$51-60$	F10.4	PERT(4)	Final x coordinate (percent length).
	F10.4	PERT(6)	Initial y coordinate (percent width). Initial y coordinate (percent width).

2nd card in card group 28

$1-4$	A4	CODES(1)	Type of fiber.
5	1X		
$6-9$	A4	CODES(2)	Type of matrix.
10	1X		
$11-20$	F10.4	CODES(3)	Ply thickness.
$21-30$	F10.4	CODES(4)	Void volume ratio.
$31-40$	F10.4	CODES(5)	Fiber volume ratio.
$41-50$	F10.4	CODES(6)	Ply orientation angle.

These two cards are required for each ply description, thus these cards are repeated NDES times. Ply designation numbers are assigned in the order in which the ply descriptions are listed.

HITCAN User's Manual - Version I. 0

EXAMPLE:
Card Group 1

Card Group 28

1	2	3	4	5	6
	0.	0	0	0	
0.0	100.0	0.0	100.	0.0	100.0
SICA TI15	0.2	0.0	0.5	45.0	

Columns	Field Name	Value	Description
1-4	NDES	1	The number of plys to be described is 1
1-10	PERT (1)	0.0	The initial thickness is 0.0% of the thickness at each input point.
11-20	PERT (2)	100.0	The final thickness is 100.0% of the thickness at each input point.
21-30	PERT (3)	0.0	The initial x coordinate of the ply is at 0.0% of the length at each input point.
31-40	PERT (4)	100.0	The final x coordinate of the ply is at 100.0\% of the length at each input point.
41-50	PERT (5)	0.0	The initial y coordinate of the ply is at 0.0% of the width at each input point.
51-60	PERT (6)	100.0	The final y coordinate of the ply is at 100.0% of the width at each input point.
1-4	CODES (1)	SICA	The fiber material is designated in the databank as SICA.
6-9	CODES (2)	TI15	The matrix material is designated in the databank as T115.
11-20	CODES (3)	0.2	The ply thickness is 0.2 in .
21-30	CODES (4)	0.0	The void volume ratio is 0.0 .
31.40	CODES (5)	0.5	The fiber volume ratio is 0.5 .
41-50	CODES (6)	45.0	The fiber orientation angle is 45 degrees.

HITCAN User's Manual - Version I. 0

PLY LAYUP FOR A SMMETRICAL PLYORDER

This program option card allows the user to create a symmetrical ply layup. When PLYORDER is used in conjunction with the program option card, UNSYMMETRICAL, the user can generate an unsymmetric ply layup. However, when the HPLATE model option is specified, only symmetric ply layups can be used.

Program option card: PLYORDER
Card group:
6 and 29

Columns Format | Variable |
| :--- |
| Name \quad Entry |

lst card in card group 6
1-4 I4 MAXPLY Number of plies specified for the halfthickness at the point of maximum wall thickness in the structure for the model options HPLATE, SPLATE, and S3DSOLID.

1st card in card group 29
1-80 2014 MPLY An array containing the ply order, using ply designation numbers, for one half of the wall thickness. The order is from the bottom surface to the mid-thickness line moving in the positive y or z directions.

EXAMPLE:

Card Group 6

Card Group 29

HITCAN User's Manual - Version I. 0

Columns	Field Name	Value	Description
1-4	MAXPLY	2	There are two plys from the bottom surface to the mid-thickness line.
1-4	MPLY (1)	1	The 1st ply up from the bottom surface has the designation number of 1 .
5-8	MPLY (2)	1	The 2nd ply up from the bottom surface has the designation number of 1 .

```
HITCAN User's Manual - Version I.O
```

PLY LAYUP FOR AN UNSYMMETRICAL PLYORDER
This option specifies an unsymmetric ply layup. This option is to be used in conjunction with the PLYORDER program option card.

Program option card: UNSYMMETRICAL PLYORDER and PLYORDER

Card group:
7 and 30
Columns Format \quad Variable \quad Name Entry

1st card of card group 7
1-4 I4 LMAX Number of plies specified for the halfthickness at the point of maximum wall thickness in the structure for the model options SPLATE and S3DSOLID.

2nd card of card group 30
1-80 2014 NPLY An array containing the ply order, using ply designation numbers, for one half of the wall thickness. The order is from the top surface to the mid-thickness line moving in the negative y or z directions.

EXAMPLE:

Card Group 7

Card Group 30

12

	HITCAN User's Manual - Version I. 0		
Columns	Field Name	Value	Description
$1-4$	MAXPLY	2	There are two plys from the bottom surface to the mid-thickness line.
$1-4$	MPLY(1)	1	The lst ply up from the mid-thickness line has the designation number of 1. The 2nd ply up from the mid-thickness line has the designation number of 1.

HITCAN User's Manual - Version I. 0

PLY LAYUP FOR READ IN MODEL OPTION

This option enables the user to enter a ply layup for the READ IN MODEL option.
Program option card: None

Card group: 8,12 , and 31

Columns	Format	Variable Name	Entry
1st card of card group 8			
$1-4$	I4	MAXPLY	Maximum number of plies at any one node.
1st card in card group 12			
1-4	14	NPLSET	Number of data sets describing the ply layup at each node.
1st card in card group 31			
1-4	I4	Ibeg	The first node number in this set of nodes.
5-8	I4	IEND	The last node number in this set of nodes.
9-12	I4	INCR	Increment at which the node numbers are incremented.
13-16	I4	NOP	Number of plies at these nodes.
2nd card of card group 31			
$1-80$	2014	MPLY	An array containing the ply order, using ply designation numbers, for one half of the wall thickness. The order is from the bottom surface to the mid-thickness line moving in the positive y or z directions.

These 2 cards are repeated NPLSET times.

hITCAN User's Manual - Version I. 0

EXAMPLE:

Card Group 8

Card Group 12

Card Group 31

Columns	Field Name	Value	Description
1.4	MAXPLY	2	The maximum number of plies is 3 .
1-4	NPLSET	1	One data set is used to describe the ply layup or each node in the model.
$1-4$	IBEG	1	The 1st node in this series of nodes is 1 .
5-8	IEND	16	The last node in this series of nodes is 16 .
9-12	INCR	1	The increment between node numbers is 1 .
13-16	NOP	3	The number of plies to be read in is 3 .
1-4	MPLY (1)	1	The 1st ply up from the bottom surface line has the designation number of 1 .
5-8	MPLY (2)	2	The 2nd ply up from the bottom surface has the designation number of 2 .
9-12	MPLY (3)	1	The 3rd ply up from the bottom surface has the designation number of 1 .

```
HITCAN User's Manual - Version I.O
```


INTERPHASE DATA

This option enables the user to specify the existence of a discrete interphase between the fiber and the matrix. The thickness of the interphase is specified as a fraction of the fiber diameter, i.e., Pinter $=\left(D_{0}-D\right) / D_{0}$, where D_{0} represents the initial fiber diameter and D the fiber diameter after degradation.
Program option card: INTERPHASE

Card group: 23

Columns Format | | Variable |
| :--- | :--- |
| Name Entry | |

1st card of card group 23
1-8 F8.4 PINTER Thickness of the interphase as a fraction of fiber diameter.

EXAMPLE:

Card Group 23

1	2	3	4	5	$\begin{aligned} & 6 \\ & 0 \end{aligned}$
1....... 0 .	0	0	. 0	. 0	
0.1					

Columns	Field Name	Value	Description $1-8$
	PINTER	.1	The thickness of the interphase is .1

3.5 TYPES OF LOADING

There are four types of loading available in HITCAN. They are:

> Centrifugal,
> Nodal Forces,
> Pressure,
> Temperature.

Each loading type has its own program option card and card groups. Along with the program option cards and card groups associated with the different loadings, additional card groups are needed for program control. The following table summarizes the different loadings and their program option cards and card groups.

LOADING TYPE	PROGRAM OPTION CARD	CARD GROUP
Centrifugal	ANGULAR	35
Nodal Forces	FORCE	15
		36
		16
Pressure	PRESSURE	33
		34
Temperature	TEMPERATURE	17
		33
		34
Control		10
		32

HITCAN User's Manual - Version I. 0

CENTRIFUGAL LOADING

This option defines a centrifugal distributed loading.
Program option card: ANGULAR
Card group: 35

Columns Format | Variable |
| :--- |
| Name |

1st card

1-30	3F10.4	GRIDP1	The first of two points required to define the axis of rotation. See Figure 3.16, for the direction of this axis. GRIDP1 is an array of three real numbers. The first real number is the x coordinate, the second is the y coordinate, and the third real number is the z coordinate.
31.60	3F10.4	GRIDP2	The second of two points required to define the axis of rotation. GRIDP2 is an array of three real numbers. The first real number is the x coordinate, the second is the y coordinate, and the third real number is the z coordinate.

2nd card
1-80 8F10.4 ANGVEL Rotational speed in revolutions per second at each time step.

HITCAN User's Manual - Version I. 0

Figure 3.16: Direction Of Axis For Centrifugal Loading

HITCAN User's Manual - Version I. 0

EXAMPLE:

Card Group 35

1	2	3	4	5	6
1........ 0	0	. 0	0	. 0	
0.0	0.0	0.0	1.0	0.0	0.0
100.0					

Columns	Field Name	Value	Description
1-10	GRIDPI (1)	0.0	X -coordinate
11-20	GRIDP1(2)	0.0	Y-coordinate
21-30	GRIDP1 (3)	0.0	Z-coordinate
31.40	GRIDP2(1)	1.0	X-coordinate
41-50	GRIDP2(2)	0.0	Y-coordinate
51-60	GRIDP2 (3)	0.0	z-coordinate
1-10	ANGVEL(1)	100.0	The rotational velocity in rad/sec.

hitcan User's Manual - Version I. 0

NODAL FORCE LOADING
This option allows the user to input static concentrated nodal loads.
Program option card:
Card groups:
FORCE
15 and 36
Variable
Columns
Format Name

Entry
1st card in card group 15
1-4 I4 NCFOR Number of nodal loads
1st card in card group 36

$1-4$	I4	NCFNOD	Node number
$5-8$	I4	NCFDIR	Degree-of-freedom

2nd card in card group 36
1-80 8F10.4 CFVAL Value of the load at each load step
Card group 36 is repeated NCFOR times.
EXAMPLE:
Card Group 15

Card Group 36

	1	2	3	4	5	6
1.	0	. 0	. 0	. 0	0	
1						
10.						

Columns	Field Name		Value	
			Description	
$1-4$	NCFOR			
$1-4$	NCFNOD			Number of nodal forces is 1.
$5-8$	NCFDIR	1		The force acts at node \#1.
$1-10$	CFVAL	10.0		The force acts along the X-axis.
10			The intensity of the load.	

```
HITCAN User's Manual - Version I.O
```


PRESSURE LOADING

This card set allows the user to input the pressure loading. For either solid or hollow structures using the plate element, the user can specify both a lateral pressure and an uniform edge pressure. For the plane stress, plane strain, and 3D solid elements only an uniform edge pressure can be specified. Note that if PL and PU are used to input the pressure loading the variables TL and TU must also be specified. If temperature effects are not desired, then TL and TU must be set to 0.0

The pressure is entered using one of the following three options:
A. When the SPLATE model option is specified.
B. When the HPLATE model option is specified.
C. When the S3DSOLID model or the READ IN MODEL options are specified.

Program option card: PRESSURE
Card groups: 16,33 , and 34

Columns Format | Variable |
| :--- |
| Name Entry |

lst card in card group 16

1-4 14 NPRES | Number of pressure input data sets. These |
| :--- |
| data sets specify those elements which have |
| a normal surface pressure (positive into |
| the element). |

Option A

card la in card group 33

$1-10$	F10.4	TL	Temperature on the lower surface.
$11-20$	F10.4	TU	Temperature on the upper surface.
$21-30$	F10.4	PL	Pressure on the lower surface.
$31-40$	F10.4	PU	Pressure on the upper surface.

This card is repeated (MSECT(1) $+\operatorname{MSECT}(2)+\ldots+\operatorname{MSECT}(I)) * N T I S T P$ times, where $\mathrm{I}=1$, NSECT.

HITCAN User's Manual - Version I. 0

Columns Format Name Entry
Option B
card 1b in card group 33

$1-10$	F10.4	TL	Temperature on the lower surface.
$11-20$	F10.4	TU	Temperature on the upper surface.
$21-30$	F10.4	PU	Pressure on the lower surface.
$31-40$	F10.4	PL	Pressure on the upper surface.

Note that each card corresponds to an input point, thus, this card is repeated (MSECT $(1,1)+\operatorname{MSECT}(2,1)+\ldots+\operatorname{MSECT}(1,1)) \star N T I S T P$ times, where $\operatorname{I=1}, \operatorname{LSECT}(1)$.
card $2 b$ in card group 33

$1-10$	F10.4	TL	Temperature on the lower surface.
$11-20$	F10.4	TU	Temperature on the upper surface.
$21-30$	F10.4	PU	Pressure on the lower surface.
$31-40$	F10.4	PL	Pressure on the upper surface.

Note that each card corresponds to an input point, thus, this card is repeated (MSECT $(1,2)+\operatorname{MSECT}(2,2)+\ldots+\operatorname{MSECT}(I, 2)) \star \operatorname{NTISTP}$ times, where $\operatorname{I=1}, \operatorname{LSECT}(2)$.
card 3 in card group 33

$1-4$	I4	IBEG	The first node number in this set of nodes.
$5-8$	I4	IEND	The last node in this set of nodes.
$9-12$	I4	INCR	Increment between node numbers.

card 4 in card group 33
1-80 F10.4 PREVAL An array containing the intensity of the edge pressure at each load step.

Cards 3 and 4 are repeated NPRES times.
Option C
card 3 in card group 34

$1-4$	I4	IBEG	Beginning element number.
$5-8$	I4	IEND	Ending element number.
$9-12$	I4	INCR	Increment between element numbers.

card 4 in card group 34
1.80 F10.4 PREVAL An array containing the intensity of the edge pressure at each load step.

Cards 3 and 4 are repeated NPRES times.

hITCAN User＇s Manual－Version I． 0

Cards 3 and 4 are repeated NPRES times．
EXAMPLE：
Card Group 16

1	2	3	4	5	
1．．．．．．．． 0 ．	0.	0.	0	0．．．．．．．．． 0	
1					
Card Group 33					
，	2	3	4	5	6
． 0.	． 0	． 0	． 0	．	
70.0	70.0	0.0	10.0		
70.0	70.0	0.0	10.0		
70.0	70.0	0.0	20.0		
70.0	70.0	0.0	20.0		

Card Group 34

1	2	3	4	$5 \quad 6$	
1．．．．．．．． 0	． 0	． 0		． 0	
14	1 （ 1 d				
10.0					

Columns	Field Name	Value	Description
$1-4$	NPRES	1	There is 1 set of data to describe the edge loads．
1－10	TL	70.0	Temperature on the lower surface at input point 非 of input section 非1．
11－20	TU	70.0	Temperature on the lower surface at input point 非 of input section 非1．
21－30	PL	0.0	Pressure on the lower surface at input point 非 of input section 非1．
31－40	PU	10.0	Pressure on the upper surface at input point 非1 of input section 非．
1－10	TL	70.0	Temperature on the lower surface at input point 非 2 of input section 非1．
11－20	TU	70.0	Temperature on the lower surface at input point $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ of input section 非．
21－30	PL	0.0	Pressure on the lower surface at input point 非2 of input section 非1．
31－40	PU	10.0	Pressure on the upper surface at input point 非2 of input section 非1．
1－10	TL	70.0	Temperature on the lower surface at input point $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 1 of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2．
11－20	TU	70.0	Temperature on the lower surface at input point $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ l of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ ．
21－30	PL	0.0	Pressure on the lower surface at input point \＃1 of input section \＃2．
Chapter 3			March， 1992

Columns	Field Name	Value	Description
31－40	PU	20.0	Pressure on the upper surface at input point 非 of input section on 非2．
1－10	TL	70.0	Temperature on the lower surface at input point 非2 of section 非2．
11－20	TU	70.0	Temperature on the lower surface at input point \＃2 of input section \＃2．
21－30	PL	0.0	Pressure on the lower surface at input point \＃2 of input section \＃2．
31－40	PU	20.0	Pressure on the upper surface at input point \＃2 of input section \＃2．
$1-4$ 1	IBEG	1	The edge load is applied to elements through 4.
5－8	IEND	4	
9－12	INCR	1	
1－10	PREVAL	10.0	The intensity of the edge load．

TEMPERATURE LOADING

This card set allows the user to input a distributed temperature loading. Note that if TL and TU are used to input the temperature loading the variables PL and PU must also be specified. If there is no lateral pressure loading, then PL and PU should be set 0.0 . The ply temperatures generated by $T L$ and $T U$ will be overridden by the ply temperatures contained in the variable TEPLY. The temperature is entered using one of the following three options:
A. When the SPLATE model option is specified.
B. When the HPLATE model option is specified.
C. When the S3DSOLID model or the READ IN MODEL options are specified.

Program option card: TEMPERATURE
Card groups: $\quad 17,33$, and 34

| | Variable |
| :--- | :--- | :--- |
| Columns | Format \quad Name |

1st card in card group 17

$1-4$	I4 NTEMP	Number of temperature input data sets. These data sets be can used either to specify the
temperature at the nodes (READ IN MODEL or		

		HITCAN User's Manual - Version I. 0
Columns		
	Variable	
	Name \quad Entry	

Option A

card la in card group 33

$1-10$	F10.4	TL	Temperature on the lower surface.
$11-20$	F10.4	TU	Temperature on the upper surface.
$21-30$	F10.4	PL	Pressure on the lower surface.
$31-40$	F10.4	PU	Pressure on the upper surface.

Note that each card corresponds to an input point, thus, this card is repeated (MSECT $(1)+\operatorname{MSECT}(2)+\ldots+\operatorname{MSECT}(I)) * N T I S T P$ times, where $I=1, N S E C T$.

Option B

card $1 b$ in card group 33

$1-10$	F10.4	TL	Temperature on the lower surface.
$11-20$	F10.4	TU	Temperature on the upper surface.
$21-30$	F10.4	PU	Pressure on the lower surface.
$31-40$	F10.4	PL	Pressure on the upper surface.

This card is repeated $(\operatorname{MSECT}(1,1)+\operatorname{MSECT}(2,1)+\ldots+\operatorname{MSECT}(I, 1)) *$ NTISTP times, where $\mathrm{I}=1$,LSECT(1).
card $2 b$ in card group 33

$1-10$	F10.4	TL	Temperature on the lower surface.
$11-20$	F10.4	TU	Temperature on the upper surface.
$21-30$	F10.4	PU	Pressure on the lower surface.
$31-40$	F10.4	PL	Pressure on the upper surface.

This card is repeated $(\operatorname{MSECT}(1,2)+\operatorname{MSECT}(2,2)+\ldots+\operatorname{MSECT}(I, 2)) \star \operatorname{NTISTP}$ times, where $I=1, L S E C T(2)$.
card 3 in card group 33

$1-4$	I4	IBEG	The first node number in this set of nodes.
$5-8$	I4	IEND	The last node in this set of nodes.
$9-12$	I4	INCR	Increment between node numbers.

card 4 in card group 33
1-80 F10.4 TEPLY Array of ply temperatures at each ply for each time step.

Cards 3 and 4 are repeated NTEMP times.

```
HITCAN User's Manual - Version I.O
```

card 3 in card group 34

$1-4$	I4	IBEG	Beginning node number．
$5-8$	I4	IEND	Ending node number．
$9-12$	I4	INCR	Increment between node numbers．

card 4 in card group 34
1－80 F10．4 TENOD Array of nodal temperatures at each node in the data set for each load step．

Cards 3 and 4 are repeated NTEMP times．
EXAMPLE：
Card Group 33

1	2	3	4	$5 \quad 6$
1．．．．．．．． 0	． 0	． 0	． 0	．0．．．．．．．．． 0
70.0	70.0	0.0	0.0	
70.0	70.0	0.0	0.0	
100.0	100.0	0.0	0.0	
100.0	100.0	0.0	0.0	

Columns	Field Name	Value	Description
1－10	TL	70.0	Temperature on the lower surface at input point 非 of input point section \＃1．
11－20	TU	70.0	Temperature on the lower surface at input point 非l of input section 非．
21－30	PL	0.0	Pressure on the lower surface at input point 非 of input section 非1．
31－40	PU	0.0	Pressure on the upper surface at input point 非1 of input section 非1．
1－10	TL	70.0	Temperature on the lower surface at input point \＃2 of input section \＃1．
11－20	TU	70.0	Temperature on the lower surface at input point 非 2 of input section $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$ ．
21－30	PL	0.0	Pressure on the lower surface at input point 非2 of input section 非．
31－40	PU	0.0	Pressure on the upper surface at input point \＃2 of input section 非1．

HITCAN User's Manual - Version I. 0

Columns	Field Name	Value	Description $1-10$		
TL	100.0	Temperature on the lower surface at input point \#1 of input section \#2.			
$21-20$	TU	PL	00.0		Temperature on the lower surface at
:---					
input point \#1 of input section \#2.					
$31-40$					

```
HITCAN User's Manual - Version I.O
```


PROGRAM CONTROL CARDS

These cards are required to increment the loading.

Program option card:	None
Card group:	10 and 32

Columns Format | Variable |
| :--- |
| Name Entry |

lst card in card group 10

$1-4$	I4	I4	NTISTP
$5-8$	NMECH	Number of load steps. Number of mechanical cycles used in METCAN	
to account for cyclic damage (used for			
fatigue analysis).			

HITCAN User's Manual - Version I. 0

Figure 3.17: Definition of The Load Increment

HITCAN User's Manual - Version I. 0

EXAMPLE:

Card Group 10

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$						
1........0........0.........0..........0......... 00						
$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 2 & 10\end{array}$						
1.0						

Card Group 32

1	2	3	4	5	6
1........ 0	. 0	. 0	. 0		
0.0					

Columns	Field Name	Value	Description $1-4$
NTISTP	1		Number of load steps is 1. Number of mechanical cycles is 1
$9-12$	NMECH	NTHER	1

3.6 BOUNDARYCONDITIONS

In this section, the necessary program option cards and card groups used to describe the boundary conditions are given. To enter the boundary conditions, card groups 19 and 41 are used. If the skewed boundary conditions are required in the analysis, coordinate transformations are available. This option requires the program option card TRANSFORMATION and the card groups 18 and 40.

HITCAN User's Manual - Version I.O

BOUNDARY CONDITIONS

These cards are required to enter the boundary conditions.

Program option card:	None
Card group:	19 and 41

Columns Format \quad Variable \quad Name

Ist card in card group 19

$1-4$	I4	NBC	Number of boundary condition data sets.
1st card in card group	41		
$1-4$	I4	IBEG	Beginning node number. $5-8$
$9-12$	I4	IEND	Ending node number.
$13-16$	In 4	Increment at which the nodes in this series	
are incremented.			
Degree-of-freedom which is fixed.			

This card is repeated NBC times.

EXAMPLE:

Card Group 19

Card Group 41

1	2	3	4	5	6
1........ 0 .	0.	0.	0	0	
1101					

Columns	Field Name	Value	Description
$1-4$	NBC	1	1

hitcan User's Manual - Version I. 0

Columns	Field Name	Value	Description
9-12	INCR	1	
13-16	IDOF	3	

HITCAN User's Manual - Version I. 0

COORDINATE TRANSFORMATION

Allows the user to specify a coordinate transformation of the global coordinate system into a local coordinate system at specified nodes. If more than one rotation is applied at a node, HITCAN executes all the entered rotations successively. This feature can be used to obtain transformations around an arbitrary axis. Each subsequent rotation acts upon the last previous coordinate system defined at the node. Note that this option follows the right hand coordinate system.

Program option card: TRANSFORMATION
Card group: 18 and 40

Columns Format $\begin{aligned} & \text { Variable } \\ & \text { Name Entry }\end{aligned}$
1st card in card group 18
1-4 I4 NTR $\begin{aligned} & \text { Number of coordinate transformation data } \\ & \text { sets }\end{aligned}$ sets.

Dst card in card group 40
\(\left.$$
\begin{array}{llll}1-4 & \text { IT } & \text { IBEG } & \begin{array}{l}\text { First node in this set of nodes. } \\
5-8\end{array} \\
9-12 & \text { IT } & \text { IND } & \begin{array}{l}\text { Last node in this set of nodes. }\end{array}
$$

Increment at which nodes in this set of nodes\end{array}\right]\)	In ce to be incremented.

2nd card in card group 40
1-10 F10.4 TRANG Angle over which the coordinate system is rotated.

The cards in card group 40 are repeated NTR times.

Flgure 3.18 : The Different Levels of Analysis Results Available In The Primary Output File

HITCAN User's Manual - Version I.O

OUTPUT CONTROL

Program option card:	None
Card group:	42

Columns Format | Variable |
| :--- |
| Name Entry |

1st card in card group 42

1-4	I4	NPRT (1,1)	Initial node for nodal displacements, velocities, and accelerations of set 1.
5-8	I4	$\operatorname{NPRT}(2,1)$	Final node for nodal displacements,
			velocities, and accelerations of set 1.
9-12	I4	NPRT (1, 2)	Initial node for nodal displacements,
			velocities, and accelerations of set 2.
13-16	I4	NPRT (2,2)	Final node for nodal displacements,
			reactions, velocities, and accelerations
			of set 2 .
Etc.			Etc. in I4 format.

2nd card in card group 42

$1-4$	I4	NPRTS (1,1)	Initial node for ply stress output of set 1.
$5-8$	I4		
$9-12$	I4	NPRTS $(2,1)$	Final node for ply stress output of set 1.
$13-16$	I4	NPRTS $(1,2)$	Initial node for ply stress output of set 2,
Etc.			FPRTS $(2,2)$

3rd card in card group 42

$1-4$	I4	NPRTP (1,1)	Initial node for constituent properties and stresses of set 1.
$5-8$	I4	NPRTP $(2,1)$	Final node for constituent properties and stresses of set 1.
$9-12$	I4	NPRTP $(1,2)$	Initial node for constituent properties and stresses of set 2.
$13-16$	I4		NPRTP(2,2)
Etc.		Final node for constituent properties and stresses of set 2.	
Etc. in I4 format.			

hitcan User's Manual - Version I. 0

Columns	Field Name	Value	Description
$1-4$	NPRTP (1,1)	41	First node in the lst series of nodal constituent properties and stresses is 41.
5-8	$\operatorname{NPRTP}(2,1)$	41	Last node in the lst series of nodal constituent properties and stresses is 41.
1-4	$\operatorname{NPPLY}(1,1)$	1	First ply in the lst series of ply constituent properties and stresses is 1 .
5-8	$\operatorname{NPPLY}(2,1)$	4	Last ply in the lst series of ply constituent properties and stresses is 4 .
1-10	TIMEPN	10.0	A PATRAN results file is desired at 10.0 sec .

3.8 PROGRAM OPTION CARDS

There are 29 program option cards. The option cards either control the flow through the program or activate various card groups. These cards are listed and summarized below in alphabetical order.

ACCELERATION
ANGULAR
BRICK
BUCKLE
DAMP
DISPLACEMENT
DYNAMIC
ECHO
ENDOPTION
FE MODEL ONLY
FORCE
HPLATE
INTERPHASE
MODAL
PLATE
PLYORDER
PRESSURE
PROFILE
READ IN MODEL
RESTART

HITCAN User's Manual - Version I. 0
S3DSOLID
SPLATE
STRAIN
STRESS
TEMPERATURE
TITLE
TRANSFORMATION
UNSYMMETRICAL PLYORDER
VELOCITY

The HPLATE, S3DSOLID, and the SPLATE option cards determine the type of finite element model to be generated by HITCAN. The READ IN MODEL option enables the user to input into HITCAN a finite element model consisting of eight node solid elements. One of these four cards must be included in the "Program Option Cards" block of the input deck.

The ENDOPTION card is required to designate the end of the "Program Option Cards". Note that only the first four characters, underlined in the list of the option cards above, are required to be input. A brief description of each program option card follows.

ACCELERATION

This option enables the user to specify initial acceleration, at user-selected nodal points, for the direct time integration analysis. If this option is not specified, the initial accelerations are set to 0.

ANGULAR

This option defines a centrifugal distributed loading. The variables required for this option can be found in card group number 35.

BRICK

When this option is specified, a 8 -node isoparametric 3D solid element will be used. This option card is to be used in conjunction with the S3DSOLID and the READ IN MODEL option cards. This element has 3 translational degrees of freedom identified by u_{x}, u_{y}, and u_{z}, as shown in Figure 3.11.

4 th card in card group 42

$1-4$	I4	NPPLY1,1)	Initial ply for constituent properties and stresses of set 1.
$5-8$	I4	NPPLY $(2,1)$	Final ply for constituent properties and stresses of set 1.
$9-12$	I4	NPPLY $(1,2)$	Initial ply for constituent properties and stresses of set 2.
Etc.	I4	NPPLY $(2,2)$	Final ply for constituent properties and stresses of set 2.
Etc. in I4 format.			

5th card in card group 42

$1-10$	F10.6	TIMEPN(1)		
11-20	F10.6	TIMEPN (2)		lst time at which a patran results
:---				
file is written.				
Etc.				

EXAMPLE:
Card Group 42

Columns	Field Name	Value	Description		
$1-4$	NPRT $(1,1)$	1	81		First node in the 1st series of nodal
:---					
displacements is 1.					

March, 1992

```
HITCAN User's Manual - Version I.O
```


BUCKLE

This option activates the buckling analysis. To determine the critical buckling load, MHOST uses the subspace iteration method. For a description of this method, see Reference 7. When this option is used, a buckling analysis is performed at the initial load and the times specified in the array TIMEMB.

DAMP

This option defines damping for the direct time integration analysis. At the present time, only Rayleigh damping is available in HITCAN. Thus damping matrix [C] is of the form

$$
[C]=a[M]+B[K],
$$

where a is the damping coefficient of the mass matrix [M] and B is the damping coefficient of the stiffness matrix [K].

DISPLACEMENT

This option enables the user to specify initial displacements, at user-selected nodal points, for the direct time integration analysis. If this option is not specified, the initial displacements are set to 0.

DYNAMIC
This option activates the direct time integration dynamic analysis. The integration scheme used is the Newmark-Beta method. For a description of this method, see Reference 7 .

ECHO
This option activates the print out of a reflection of the input data, prior to interpretation by HITCAN. No other cards are required to be input in conjunction with this option.

ENDOPTION

This option represents the end of the "Program Option Cards" block. It must be the last card in this block. No other cards are required to be input in conjunction with this option.

FE MODEL ONLY

This option enables the user to generate a finite element mesh of the structure without conducting any analysis. The mesh is output in a PATRAN neutral file format. No other cards are required to be input in conjunction with this option.

```
HITCAN User's Manual - Version I.O
```


FORCE

This option allows the user to input static concentrated nodal loads.

HPLATE

This option activates the modeling of a hollow structure using the plate element. This option can only be used with the plate element, thus the program option card PLATE must also be specified.

INTERPHASE

This option enables the user to specify the existence of a discrete interphase between the fiber and the matrix. The thickness of the interphase is specified as a fraction of the fiber diameter.

MODAL
When this option is used HITCAN will perform a free vibration dynamic analysis to determine the frequencies and the mode shapes. To determine the frequencies and the mode shapes, MHOST uses the subspace iteration method. For a description of this method, see Reference 7.

PANEL

If this option is specified along with the HPLATE program option card a finite element model of a hollow panel can be generated. With this option the vertical members of the panel are evenly spaced. Note that the spars represent the sides of the panel. A typical panel is illustrated in Figure 3.7. No other cards are required to be input in conjunction with this option.

PLATE
This option selects the four-node isoparametic plate element both for the solid (SPLATE model option) and the hollow (HPLATE model option) structures. This element, which was derived from the Reissner-Mindlin theory for plates and shells, has 6 degrees-of-freedom at each node. These degrees-of-freedom are identified by $u_{x}, u_{y}, u_{z}, H_{x}, H_{y}$, and H_{z}. This element is shown in Figure 3.12 .

PLYORDER

This option allows the user to build a composite model by defined plies over the surface of the structure and through the thickness producing an integrated laminated model of the entire structure. The user has the flexibility of selecting the number of plies, the ply thickness, the fiber volume ratio, the

HITCAN User's Manual - Version I. 0

void volume ratio, and the fiber orientation in building either a symmetric or an unsymmetric ply layup. When PLYORDER is used in conjunction with the program option card, UNSYMMETRICAL, the user can generate an unsymmetric ply layup. However, when the HPLATE model option is specified, only symmetric ply layups can be used.

PRESSURE

This option allows the user to input the pressure loading. For either solid or hollow structures using the plate element, the user can specify both a lateral pressure and an uniform edge pressure. For the plane stress, plane strain, and 3D solid elements only an uniform edge pressure can be specified. Note that if PL and PU are used to input the pressure loading the variables TL and TU must also be specified. If temperature effects are not desired, then $T L$ and $T U$ must be set to the reference temperature.

PROFILE

Without the presence of this card the nodal input points are assumed to be on the outer surface of the shell. HITCAN will then correct the grid point positions by moving them to the mid-wall poistion in a direction normal to the surface.

This option will suppress this mid-wall correction and will retain the grid points on the external profile of the shell. This option can be used only with the HPLATE model option.

READ IN MODEL
This option allows the user to input a finite element model using eight-node solid elements. The user must provide the element connectivities and the nodal coordinates. When this option is chosen, the user must also specify the BRICK program option card.

RESTART

This option enables the user to conduct an analysis in several runs, an useful option for large problems. When the RESTART option is specified, a restart file created in a previous run is input. This file contains the necessary information to continue the analysis, including, the load step number, increment number, ply stresses, microstresses, microstress rates, material failure flags, and nodal displacements. For a restart run, the input is the same as before, except that RESTART is now specified in the program option cards.

A restart file is created by specifying the variable MSTART. MSTART is the number of increments to be preformed in a particular run. After the analysis has progressed through MSTART increments, a restart file is created and the run is

HITCAN User's Manual - Version I. 0

terminated. Note that a restart file will also be created when the maximum number of allowable iterations (the variable MITER) in HITCAN is exceeded.

S3DSOLID

This option activates the modeling of a solid structure using the 3D solid element.

SPLATE

This option activates the modeling of a solid structure using the plate, plane stress, or plane strain elements.

STRAIN
This option specifies, that a four-node isoparametic plane strain element will be used in the analysis. Each node within this element has 2 degrees-of-freedom, identified by u_{x} and u_{y}. This element is shown in Figure 3.12 .

STRESS

This option specifies, that a four-node isoparametic plane stress element will be used in the analysis. Each node within this element has 2 degrees-of-freedom, identified by u_{x} and u_{y}. This element is shown in Figure 3.13.

TEMPERATURE

This option allows the user to input a distributed temperature loading. Note that if TL and TU are used to input the temperature loading the variables PL and PU must also be specified. If there is no lateral pressure loading, then PL and PU should be set 0 . The ply temperatures generated by $T L$ and $T U$ will be overridden by the ply temperatures contained in the variable TEPLY.

TITLE=

A maximum of 5 title lines are allowed. Each title line may have a maximum of 74 characters following the equal sign.

TRANSFORMATION

This option allows the user to specify a coordinate transformation of the global coordinate system into a local coordinate system at specified nodes. If more than one rotation is applied at a node, HITCAN executes all the entered rotations successively. This feature can be used to obtain transformations around an arbitrary axis. Each subsequent rotation acts upon the last previous coordinate system defined at the node. Note that this option follows the right hand coordinate system.

hITCAN User's Manual - Version I. 0

UNSYMMETRICAL PLYORDER
This option specifies an unsymmetric ply layup. This option is to be used in conjunction with the PLYORDER program option card.

VELOCITY
This option enables the user to specify initial velocities, at user-selected nodal points, for the direct time integration analysis. If this option is not specified, the initial velocities are set to 0.

3.9 DATABANK

As discussed previously, a HITCAN input file contains all of the necessary input to execute HITCAN, except for the thermal-mechanical properties of the composite material. These properties reside in a file labeled "Data Bank". The user may chose any other name for this file. The data bank file supplied with the code contains the properties for several aerospace composite materials. This file can be modified by the user for other materials using the input described below.

The organization of the data bank is shown in Figure 3.19. As can be seen in the figure, the first section of the data bank contains the fiber constituent properties, the second section contains the matrix constituent properties, and the third section contains the interphase properties. The data bank file separates the input for the different constituent materials (fiber, matrix, interphase) by a material identifier code as the first line of input for that material. This identifier is followed by the properties data, at the end of which, starts a new material identifier code. The material identifier codes for the fiber and the matrix consists of 4 unique characters. The interphase code consists of 9 characters. The first 4 of the 9 characters, are the code for the fiber type used in the interphase. The fiber type is then followed by a slash. The last 4 characters of the interphase code are the code for the matrix type used in the interphase. Note that the interphase code must be a combination of the same fiber and matrix codes that are used.

The format of variables used in the data bank is shown on the following pages.

HITCAN User's Manual - Version I. 0

Figure 3.19: Organization of Constituent Databank

```
HITCAN User's Manual - Version I.O
```

FIBER PROPERTIES

Columns	Format	Variable Name	Entry
1st card			
$1-2$	I2	NFTYP	Number of fiber data sets

Cards 2 to 13 are repeated NFTYP times.
2nd card
1-4 A4 DUN1 Name of fiber.
3rd card

1-6	I6	NDUN1	Number of fibers per bundle.
7-6	F10. 3	DUN2	Fiber diameter in inches.
4th card			
1-5	I5	NUMFPO	Number of fiber properties.
6-10	I5	NUMFSO	Number of fiber microstresses.
11-15	I5	NUMFQ0	Number of fiber microstress rates.
16-20	I5	NUMFT	Number fiber exponents.

5th card

1-10	F10. 3	TEMPF	Reference temperature in ${ }^{\circ} \mathrm{F}$.
11-20	F10. 3	TEMPMF	Melting temperature in ${ }^{\circ} \mathrm{F}$.
21-30	F10. 3	DOTHF	Limit-state value of stress rate $1 \mathrm{~b} / \mathrm{in}^{2} \mathrm{sec}$.
31-40	F10.3	RHOF	Fiber density in $\mathrm{lb} / \mathrm{in}^{3}$.
41-50	F10. 3	EF11	Modulus longitudinal in $1 \mathrm{~b} / \mathrm{in}^{2}$.
51-60	F10. 3	EF22	Modulus transverse in $1 \mathrm{l} / \mathrm{in}^{2}$.
61-70	F10.3	GF12	Shear modulus in $1 \mathrm{l} / \mathrm{in}{ }^{2}$.
71-80	F10. 3	GF23	Shear modulus in $1 \mathrm{l} / \mathrm{in}{ }^{2}$.
6th card			
1-10	F10. 3	NUF12	Poisson's ratio.
11-20	F10.3	NUF23	Poisson's ratio.
21-30	F10.3	CPF	Heat capacity in Btu/lb ${ }^{\circ} \mathrm{F}$.
31-40	F10.3	KF11	Thermal conductivity longitudinal in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$.
41-50	F10.3	KF22	Thermal conductivity transverse in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$.

Variable

Columns 51-60

61-70

71-80

7th card

$1-10$	F10.3	SF11c
$11-20$	F10.3	SF22t
$21-30$	F10.3	SF22c
$31-40$	F10.3	SF12s
$41-50$	F10.3	SF23s

8th card

$1-10$	F10.3	RF11
$11-20$	F10.3	RF22
$21-30$	F10.3	RF12
$31-40$	F10.3	RF23
$41-50$	F10.3	RF13

9th card

$1-10$	F10.3	QF11
$11-20$	F10.3	QF22
$21-30$	F10.3	QF12
$31-40$	F10.3	QF23
$41-50$	F10.3	QF13

10th card

$1-10$	F10.3
$11-20$	F10.3
$21-30$	F10.3
$31-40$	F10.3
$41-50$	F10.3

Name
AF11

AF22

SF11t

Entry
Thermal expansion coefficient longitudinal in in/in/ ${ }^{\circ} \mathrm{F}$.
Thermal expansion coefficient transverse in in/in/ ${ }^{\circ} \mathrm{F}$.
Longitudinal strength - tension in $\mathrm{lb} / \mathrm{in}^{2}$.

Longitudinal strength - compression in lb/in ${ }^{2}$.
Transverse strength - tension in $1 b / i n^{2}$. Transverse strength - compression in $1 b / i n^{2}$.
Shear strength in $1 b / i n$. Shear strength in $1 b / i n^{2}$.

Reference longitudinal stress in $1 b / i n^{2}$.
Reference transverse stress in lb/in ${ }^{2}$.
Reference shear stress in lb/in ${ }^{2}$.
Reference shear stress in lb/in ${ }^{2}$.
Reference shear stress in $1 b / i n^{2}$.

Reference longitudinal stress rate in lb/in ${ }^{2}$ sec.
Reference transverse stress rate in lb/in ${ }^{2}$ sec.
Reference shear stress rate in lb/in ${ }^{2}$ sec.
Reference shear stress rate in lb/in ${ }^{2}$ sec.

Reference shear stress rate in lb/in ${ }^{2}$ sec.

FTVCI(1) Modulus - exponent on stress rate.
FTVCI(2) Modulus - exponent on stress.
FTVCI(3) Modulus - exponent on temperature.
FTVCI(4) Strength - exponent on stress rate.
FTVCI(5) Strength - exponent on stress.

Columns	HITCAN User's Manual - Version I. 0		
	Format	Variable Name	Entry
51-60	F10.3	FTVCI (6)	Strength - exponent on temperature.
61-70	F10.3	FTVCI (7)	Poisson's ratio - exponent on stress rate.
71-80	F10. 3	FTVCI (8)	Poisson's ratio - exponent on stress.
11th card			
1-10	F10. 3	FTVCI (9)	Poisson's ratio - exponent on temperature.
11-20	F10.3	FTVCI(10)	Not used.
21-30	F10. 3	FTVCI (11)	Not used.
31-40	F10.3	FTVCI (12)	Not used.
41-50	F10. 3	FTVCI (13)	Heat conductivity - exponent on stress rate.
51-60	F10.3	FTVCI (14)	Heat conductivity - exponent on stress.
61-70	F10.3	FTVCI (15)	Heat conductivity - exponent on temperature.
71-80	F10. 3	FTVCI (16)	Thermal expansion coefficient - exponent on stress rate.
12th card			
1-10	F10. 3	FTVCI(17)	Thermal expansion coefficient - exponent on stress.
11-20	F10.3	FTVCI (18)	Thermal expansion coefficient - exponent on temperature.
21-30	F10. 3	FTVCI (19)	Not used.
31-40	F10.3	FTVCI (20)	Not used.
Etc.			Etc. in F10.3 format
13th card			
1-10	F10. 3	FTVCI (25)	Not used.
11-20	F10.3	FTVCI (26)	Not used.
Etc.			Etc. in F10.3 format

[^0]```
HITCAN User's Manual - Version I. 0
```

EXAMPLE: Silicon Carbide on Aluminum


HITCAN User's Manual - Version I. 0

| Columns | Field Name | Value | Description |
| :---: | :---: | :---: | :---: |
| 31-40 | KF11 | . 75 | Thermal conductivity longitudinal is $.75 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$. |
| 41-50 | KF22 | . 75 | Thermal conductivity transverse is .75 Btu/hr-ft ${ }^{20} \mathrm{~F} / \mathrm{in}$. |
| 51-60 | AF11 | . 0000018 | Thermal expansion coefficient longitudinal is . $0000018 \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}$. |
| 61.70 | AF22 | . 0000018 | Thermal expansion coefficient transverse is. 0000018 in/in/ ${ }^{\circ} \mathrm{F}$. |
| 71-80 | SF11t | 500000 | Longitudinal strength - tension is $500000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | SF11c | 650000 | Longitudinal strength - compression is $650000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 11-20 | SF22t | 500000 | Transverse strength - tension is $500000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 21-30 | SF22c | 650000 | Transverse strength - compression is $650000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 31-40 | SF12s | 300000 | Shear strength is $300000 \mathrm{lb} / \mathrm{in}$. |
| 41-50 | SF23s | 300000 | Shear strength is $300000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | RF11 | . 0 | ```Reference longitudinal stress is . 0 1b/in}\mp@subsup{}{}{2}``` |
| 11-20 | RF22 | . 0 | ```Reference transverse stress is . O lb/in}\mp@subsup{}{}{2}``` |
| 21-30 | RF12 | . 0 | Reference shear stress is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 31-40 | RF23 | . 0 | Reference shear stress is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 41-50 | RF13 | . 0 | Reference shear stress is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | QF11 | . 0 | Reference longitudinal stress rate is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 11-20 | QF22 | . 0 | Reference transverse stress rate is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 21-30 | QF12 | . 0 | Reference shear stress rate is . 0 lb/in ${ }^{2} \mathrm{sec}$. |
| 31-40 | QF23 | . 0 | Reference shear stress rate is . 0 lb/in ${ }^{2}$ sec. |
| 41-50 | QF13 | . 0 | Reference shear stress rate is .0 lb/in²sec. |
| 1-10 | FTVCI (1) | . 25 | Modulus - exponent on stress rate is .25. |
| 11-20 | FTVCI (2) | . 25 | Modulus - exponent on stress is . 25. |
| 21-30 | FTVCI (3) | . 25 | Modulus - exponent on temperature is . 25. |
| 31-40 | FTVCI (4) | . 0 | Strength - exponent on stress rate is . 0 . |
| 41-50 | FTVCI(5) | . 0 | Strength - exponent on stress is . 0 . |
| 51-60 | FTVCI (6) | . 25 | Strength - exponent on temperature is .25. |
| 61-70 | FTVCI (7) | . 25 | Poisson's ratio - exponent on stress rate is . 25 . |

HITCAN User's Manual - Version I. 0

| 71-80 | FTVCI (8) | . 25 | Poisson's ratio - exponent on stress is .25 . |
| :---: | :---: | :---: | :---: |
| 1-10 | FTVCI (9) | . 25 | Poisson's ratio - exponent on temperature is .25 . |
| 11-20 | FTVCI (10) | Blank |  |
| 21-30 | FTVCI (11) | Blank |  |
| 31-40 | FTVCI (12) | Blank |  |
| 41-50 | FTVCI (13) | . 25 | Heat conductivity - exponent on stress rate is .25 . |
| 51-60 | FTVCI (14) | . 25 | Heat conductivity - exponent on stress is .25 . |
| 61-70 | FTVCI (15) | . 25 | Heat conductivity - exponent on stress temperature is .25 . |
| 71-80 | FTVCI (16) | . 25 | Thermal expansion coefficient exponent on stress rate is .25 . |
| 1-10 | FTVCI (17) | . 25 | Thermal expansion coefficient exponent on stress is .25 . |
| 11-20 | FTVCI (18) | . 25 | Thermal expansion coefficient exponent on temperature is .25 . |
| 21-30 | FTVCI (19) | Blank |  |
| 31-40 | FTVCI (20) | Blank |  |
| 41-50 | FTVCI (21) | Blank |  |
| 51-60 | FTVCI (22) | Blank |  |
| 61-70 | FTVCI (23) | Blank |  |
| 71-80 | FTVCI (24) | Blank |  |
| 1-10 | FTVCI (25) | Blank |  |
| 11-20 | FTVCI (26) | Blank |  |
| 21-30 | FTVCI (27) | Blank |  |
| 31-40 | FTVCI (28) | Blank |  |
| 41-50 | FTVCI (29) | Blank |  |
| 51-60 | FIVCI (30) | Blank |  |

MATRIX PROPERTIES

| Columns | Format | Variable <br> Name | Entry |
| :--- | :--- | :--- | :--- |
| $1-2$ | I2 | NMTYP | Number of matrix data sets. |

Cards 2 to 14 are repeated NMTYP times.
2nd card
1-4 A4 DUN1 Name of matrix material.

3rd card

| $1-5$ | I5 | NUMMPO | Number of matrix properties. |
| :--- | :--- | :--- | :--- |
| $6-10$ | I5 | NUMMSO | Number of matrix microstresses. |
| $11-15$ | I5 | NUMMQ | Number of matrix microstress rates. |
| $16-20$ | I5 | NUMMT | Number of matrix exponents. |

4th card

| $1-10$ | F10.3 | TEMPM <br> $11-20$ | | |
|---|---|---|---|---|
| F10.3 | TEMPMM |  |
| $21-30$ | F10.3 | DOTHM |$\quad$| Reference temperature in ${ }^{\circ} \mathrm{F}$. |
| :--- |
| $31-40$ |

5th card

| 1-10 | F10. 3 | NUM12 | Poisson's ratio. |
| :---: | :---: | :---: | :---: |
| 11-20 | F10.3 | NUM23 | Poisson's ratio. |
| 21-30 | F10.3 | CPM | Heat capacity in Btu/lb ${ }^{\circ} \mathrm{F}$. |
| 31.40 | F10. 3 | KM11 | Thermal conductivity longitudinal in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$. |
| 41-50 | F10.3 | KM22 | Thermal conductivity transverse in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$. |
| 51-60 | F10. 3 | AM11 | Thermal expansion coefficient longitudinal in in/in/ ${ }^{\circ} \mathrm{F}$. |
| 61-70 | F10.3 | AM22 | Thermal expansion coefficient transverse in in/in/ ${ }^{\circ} \mathrm{F}$. |
| 71-80 | F10.3 | SM11t | Longitudinal strength - tension in $\mathrm{lb} / \mathrm{in}^{2}$. |

HITCAN User's Manual - Version I. 0

Variable Name

Entry
Columns
Format
6th card
1-10

11-20 11-30

31-40
41-50
F10. 3
F10. 3
F10. 3
F10. 3
F10. 3
SM12s
SM23s
Longitudinal strength - compression in $1 b /$ in $^{2}$.
Transverse strength - tension in $\mathrm{lb} / \mathrm{in}^{2}$.
Transverse strength - compression in $\mathrm{lb} / \mathrm{in}^{2}$.
Shear strength in $1 \mathrm{~b} / \mathrm{in}$.
Shear strength in $1 \mathrm{~b} / \mathrm{in}^{2}$.

7th card

| $1-10$ | F10.3 | RM11 |
| :--- | :--- | :--- |
| $11-20$ | F10.3 | RM22a |
| $21-30$ | F10.3 | RM22b |
| $31-40$ | F10.3 | RM22c |
| $41-50$ | F10.3 | RM12a |
| $51-60$ | F10.3 | RM12b |
| $61-70$ | F10.3 | RM12c |
| $71-80$ | F10.3 | RM23a |

8th card

| $1-10$ | F10.3 | RM23b |
| :--- | :--- | :--- |
| $11-20$ | F10.3 | RM23C |
| $21-30$ | F10.3 | RM13a |
| $31-40$ | F10.3 | RM13b |
| $41-50$ | F10.3 | RM13c |

Reference shear stress - region $b$ in lb/in ${ }^{2}$.
Reference shear stress - region $c$ in lb/in ${ }^{2}$.
Reference shear stress - region a in lb/in ${ }^{2}$.
Reference shear stress - region $b$ in lb/in ${ }^{2}$.
Reference shear stress - region $c$ in $1 b / i n^{2}$.

9th card
1-10
F10. 3
QM11
Reference longitudinal stress rate lb/in²sec.

# hITCAN User's Manual - Version I. 0 

| Columns | Format |
| :--- | :--- | :--- |
| $11-20$ | F10.3 |
| $21-30$ | F10.3 |
| $31-40$ | F10.3 |
| $41-50$ | F10.3 |
| $51-60$ | F10.3 |
| $61-70$ | F10.3 |
| $71-80$ | F10.3 |

10th card

| $1-10$ | F10.3 | QM23b |
| :--- | :--- | :--- |
| $11-20$ | F10.3 | QM23c |
| $21-30$ | F10.3 | QM13a |
| $1-40$ | F10.3 | QM13b |
| $41-50$ | F10.3 | QM13C |

11th card

| $1-10$ | $F 10.3$ |
| :--- | :--- |
| $11-20$ | $F 10.3$ |
| $21-30$ | $F 10.3$ |
| $31-40$ | $F 10.3$ |
| $41-50$ | $F 10.3$ |
| $51-60$ | $F 10.3$ |
| $61-70$ | $F 10.3$ |
| $71-80$ | $F 10.3$ |

12th card

1-10
11-20
21-30
31-40
41-50

F10. 3
F10. 3
F10. 3
F10. 3
F10. 3

> Reference shear stress rate - region b in lb/in sec.
> Reference shear stress rate - region c in lb/in ${ }^{2}$ sec.
> Reference shear stress rate - region a in lb/in ${ }^{2}$ sec.
> Reference shear stress rate - region b in lb/in sec.
> Reference shear stress rate - region c in lb/in ${ }^{2}$ sec.

Variable
Name
QM22a Reference transverse stress rate region a in $\mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference transverse stress rate region $b$ in $\mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference transverse stress rate region $c$ in $\mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region a in $1 \mathrm{~b} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region b in $1 \mathrm{~b} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region c in $1 b /$ in $^{2} s e c$.
Reference shear stress rate - region a in $1 b / \mathrm{in}^{2} \mathrm{sec}$.

MTVCI(1) Modulus - exponent on stress rate.
MTVCI(2) Modulus - exponent on stress.
MTVCI(3) Modulus - exponent on temperature.
MTVCI(4) Strength - exponent on stress rate.
MTVCI(5) Strength - exponent on stress.
MTVCI(6) Strength - exponent on temperature.
MTVCI (7) Poisson's ratio - exponent on stress rate.
MTVCI(8) Poisson's ratio - exponent on stress.

MTVCI(9) Poisson's ratio - exponent on temperature.
MTVCI(10) Not used.
MTVCI(11) Not used.
MTVCI(12) Not used.
MTVCI(13) Heat conductivity - exponent on stress rate.

```
HITCAN User's Manual - Version I.O
```

| Columns | Format | Variable <br> Name | Entry |
| :--- | :--- | :--- | :--- |
| $51-60$ | F10.3 | MTVCI(14) | Heat conductivity - exponent on stress. |
| $61-70$ | F10.3 | MTVCI(15) | Heat conductivity - exponent on temperature. <br> $71-80$ |
|  | F10.3 | MTVCI(16) | Thermal expansion coefficient - exponent on <br> stress rate. |

13th card

| $1-10$ | F10.3 | MTVCI(17) |
| :--- | :--- | :--- | | Thermal expansion coefficient - exponent on |
| :--- |
| stress. |
| $11-20$ | F10.3 $\quad$ MTVCI(18) | Thermal expansion coefficient - exponent on |
| :--- |
| temperature. |

14th card

| $1-10$ | F10.3 | MTVCI(25) | Not used. <br> $11-20$ |
| :--- | :--- | :--- | :--- |
| F10.3 | MTVCI(26) | Not used. <br> Etc. |  |

EXAMPLE: Titanium Aluminum


HITCAN User's Manual - Version I. 0

| Columns | Field Name | Value |
| :---: | :---: | :---: |
| 1-2 | NMTYP | 1 |
| 1-4 | DUN1 | TI15 |
| 1-5 | NUMMPO | 21 |
| 6-10 | NUMMSO | 5 |
| 11-15 | NUMMQO | 5 |
| 16-20 | NUMMT | 30 |
| 1-10 | TEMPM | 70 |
| 11-20 | TEMPMM | 1800 |
| 21-30 | DOTHM | 1000000 |
| 31-40 | RHOM | . 172 |
| 41-50 | EM11 | 12300000 |
| 51-60 | EM22 | 12300000 |
| 61-70 | GM12 | 45659091 |
| 71-80 | GM23 | 4659091 |
| 1-10 | NUM12 | . 32 |
| 11-20 | NuM23 | . 32 |
| 21-30 | CPM | . 29 |
| 31-40 | KM11 | . 75 |
| 41-50 | KM22 | . 75 |
| 51-60 | AM11 | . 0000045 |
| 61-70 | AM22 | . 0000045 |
| 71-80 | SM11t | 130000 |
| 1-10 | SM11c | 130000 |
| 11-20 | SM22t | 130000 |
| 21-30 | SM22c | 130000 |
| 31-40 | SM12s | 91000 |
| 41-50 | SM23s | 91000 |
| 1-10 | RM11 | . 0 |
| 11-20 | RM22a | . 0 |
| 2i-30 | RM22b | . 0 |

HITCAN User's Manual - Version I. 0

| Columns | Field Name | Value |
| :---: | :---: | :---: |
| 31-40 | RM22c | . 0 |
| 41-50 | RM12a | . 0 |
| 51-60 | RM12b | . 0 |
| 61-70 | RM12c | . 0 |
| 71-80 | RM23a | . 0 |
| 1-10 | RM23b | . 0 |
| 11-20 | RM23c | . 0 |
| 21-30 | RM13a | 0 |
| 31-40 | RM13b | . 0 |
| 41-50 | RM13c | 0 |
| 1-10 | QM11 | . 0 |
| 11-20 | QM22a | . 0 |
| 21-30 | QM22b | . 0 |
| 31-40 | QM22c | . 0 |
| 1-50 | QM12a | . 0 |
| 51-60 | QM12b | . 0 |
| 61-70 | QM12c | . 0 |
| 71-80 | QM23a | . 0 |
| 1-10 | QM23b | . 0 |
| 11-20 | QM23c | . 0 |
| 21-30 | QM13a | . 0 |
| 31-40 | QM13b | . 0 |
| 41-50 | QM13c | . 0 |
| 1-10 | MTVCI (1) | . 25 |

Description
Reference transverse stress - region
$c$ is $.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region a is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region $b$ is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region $c$ is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region a is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region b is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region c is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region a is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region $b$ is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region $c$ is
$.0 \mathrm{lb} / \mathrm{in}^{2}$.
Reference longitudinal stress rate
is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference transverse stress rate -
region a is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference transverse stress rate -
region $b$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference transverse stress rate -
region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
a is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
$b$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
c is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
a is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
$b$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
$c$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
a is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
$b$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Reference shear stress rate - region
$c$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$.
Modulus - exponent on stress rate is
. 25 .

HITCAN User's Manual - Version I. 0

| Columns | Field Name | Value |
| :---: | :---: | :---: |
| 11-20 | MTVCI (2) | . 25 |
| 21-30 | MTVCI (3) | . 25 |
| $31-40$ | MTVCI (4) | . 0 |
| 41-50 | MTVCI (5) | . 0 |
| 51-60 | MTVCI (6) | . 25 |
| 61-70 | MTVCI (7) | . 25 |
| 71-80 | MTVCI (8) | . 25 |
| 1-10 | MTVCI (9) | . 25 |
| 11-20 | MTVCI (10) | Blank |
| 21-30 | MTVCI (11) | Blank |
| 31-40 | MTVCI (12) | Blank |
| 41-50 | MTVCI (13) | 25 |
| 51-60 | MTVCI (14) | 25 |
| 61-70 | MTVCI (15) | 25 |
| 71-80 | MTVCI (16) | 25 |
| 1-10 | MTVCI(17) | 25 |
| 11-20 | MTVCI (18) | 25 |
| 21-30 | MTVCI (19) | Blank |
| 31-40 | MTVCI (20) | Blank |
| 41-50 | MTVCI (21) | Blank |
| 51-60 | MTVCI (22) | Blank |
| 61-70 | MTVCI (23) | Blank |
| 71-80 | MTVCI (24) | Blank |
| 1-10 | MTVCI (25) | Blank |
| 11-20 | MTVCI (26) | Blank |
| 21-30 | MTVCI (27) | Blank |
| 31-40 | MTVCI (28) | Blank |
| 41-50 | MTVCI (29) | Blank |
| 51-60 | MTVCI (30) | Blank |

## Description

Modulus - exponent on stress is .25. Modulus - exponent on temperature is . 25 .
Strength - exponent on stress rate is . 0 .
Strength - exponent on stress is .0 . Strength - exponent on temperature is . 25.
Poisson's ratio - exponent on stress rate is . 25 .
Poisson's ratio - exponent on stress is .25 .
Poisson's ratio - exponent on temperature is . 25 .

Heat conductivity - exponent on stress rate is .25.
Heat conductivity - exponent on stress is .25 .
Heat conductivity - exponent on temperature is . 25 .
Thermal expansion coefficient exponent on stress rate is .25 . Thermal expansion coefficient exponent on stress is .25 .
Thermal expansion coefficient exponent on temperature is .25 .

HITCAN User's Manual - Version I. 0
INTERPHASE PROPERTIES

| Columns | Format | Variab <br> Name | Entry |
| :---: | :---: | :---: | :---: |
| Ist card Sorme |  |  |  |
| 1-2 | I2 | NDTYP | Number of interphase data sets. |
| Cards 2 to 15 are repeated NDTYP times. |  |  |  |
| 2nd card |  |  |  |
| 1-4 | A4 | DUN1 | Name of fiber. |
| 5 | 1X |  |  |
| 6-9 | A4 | DUN2 | Name of matrix. |
| 3rd card |  |  |  |
| 1-5 | I5 | NUMDPO | Number of interphase properties. |
| 6-10 | I5 | NUMDS0 | Number of interphase microstresses. |
| 11-15 | I5 | NUMDQ0 | Number of interphase microstress rates. |
| 16-20 | I5 | NUMDT | Number of interphase exponents. |
| 4th card |  |  |  |
| 1-10 | F10. 3 | TEMPD | Reference temperature in ${ }^{\circ} \mathrm{F}$. |
| 11-20 | F10. 3 | TEMPMD | Melting temperature in ${ }^{\circ} \mathrm{F}$. |
| 21-30 | F10.3 | DOTHD | Limit-state value of stress rate in $\mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 31-40 | F10. 3 | RHOD | Interphase density in $1 \mathrm{~b} / \mathrm{in}{ }^{3}$. |
| 41-50 | F10.3 | ED11 | Modulus longitudinal in $1 \mathrm{~b} / \mathrm{in}^{2}$. |
| 51-60 | F10. 3 | ED22 | Modulus transverse in $\mathrm{lb} / \mathrm{in}^{2}$. |
| 61-70 | F10. 3 | GD12 | Shear modulus in $1 \mathrm{~b} / \mathrm{in}^{2}$. |
| 71-80 | F10. 3 | GD23 | Shear modulus in $1 \mathrm{~b} / \mathrm{in}^{2}$. |

5th card

| $1-10$ | F10.3 | NUD12 |
| :--- | :--- | :--- |
| $11-20$ | F10.3 | NUD23 |
| $21-30$ | F10.3 | CPD |
| $31-40$ | F10.3 | KD11 |
| $41-50$ | F10.3 | KD22 |
| $51-60$ | F10.3 | AD11 |
| $61-70$ | F10.3 | AD22 |

March, 1992

## hITCAN User's Manual - Version I. 0

Columns
71-80

6th card

| $1-10$ | F10.3 | SD11c |
| :--- | :--- | :--- |
|  |  |  |
| $11-20$ | F10.3 | SD22t |
| $21-30$ | F10.3 | SD22c |
| $31-40$ |  | F10.3 |
| $41-50$ | F10.3 | SD12s |
|  |  |  |

7th card

| 1-10 | F10.3 | RD11 |
| :--- | :--- | :--- |
| $11-20$ | F10.3 | RD22b |
| 21-30 | F10.3 | RD22c |
| 31-40 | F10.3 | RD12b |
| 41-50 | F10.3 | RD12C |
| $51-60$ | F10.3 | RD23b |
| $61-70$ | F10.3 | RD23c |

71-80
F10.3 RD13b
8th card
1-10 F10.3 RD13c
9th card

| $1-10$ | F10.3 | QD11 |
| :--- | :--- | :--- |
| $11-20$ | F10.3 | QD22b |
| $21-30$ | F10.3 | QD22c |
| 31-40 | F10.3 | QD12b |

Entry
in in/in/ ${ }^{\circ}$ F.
Longitudinal strength - tension in $1 b / i n^{2}$.

Longitudinal strength - compression in lb/in ${ }^{2}$.
Transverse strength - tension in $\mathrm{lb} / \mathrm{in}^{2}$.
Transverse strength - compression in $\mathrm{lb} / \mathrm{in}^{2}$.
Shear strength in $1 \mathrm{~b} / \mathrm{in}$.
Shear strength in $1 \mathrm{~b} / \mathrm{in}^{2}$.

Reference longitudinal stress in lb/in ${ }^{2}$. Reference transverse stress - region b $1 \mathrm{~b} / \mathrm{in}^{2}$.
Reference transverse stress - region c in $1 b /$ in $^{2}$.
Reference shear stress - region $b$ in lb/in ${ }^{2}$.
Reference shear stress - region $c$ in lb/in ${ }^{2}$.
Reference shear stress - region $b$ in $1 b /$ in $^{2}$.
Reference shear stress - region $c$ in $\mathrm{lb} / \mathrm{in}^{2}$.
Reference shear stress - region $b$ in lb/in ${ }^{2}$.

Reference shear stress - region $c$ in $1 b / \mathrm{in}^{2}$.

Reference longitudinal stress rate lb/in ${ }^{2} \mathrm{sec}$.
Reference transverse stress rate region $b$ in $1 b /$ in $^{2} s e c$.
Reference transverse stress rate region $c$ in $1 b /$ in $^{2}$ sec.
Reference shear stress rate - region $b$ in $1 \mathrm{~b} / \mathrm{in}^{2} \mathrm{sec}$.

Columns
41-50
51-60
61-70
71-80

10th card 1-10

11th card

| $1-10$ | F10.3 | DTVCI(1) | Modulus - exponent on stress rate. <br> $11-20$ |
| :--- | :--- | :--- | :--- |
| F10.3 | DTVCI(2) | Modulus - exponent on stress. |  |
| $21-30$ | F10.3 | DTVCI (3) | Modulus - exponent on temperature. |
| $31-40$ | F10.3 | DTVCI(4) | Strength - exponent on stress rate. |
| $41-50$ | F10.3 | DTVCI(5) | Strength - exponent on stress. <br> $51-60$ |
| $61-70$ | F10.3 | DTVCI(6) | Strength - exponent on temperature. |
| $71-80$ | F10.3 | DTVCI(7) | Poisson's ratio - exponent on stress <br> rate. |
|  | F10.3 | DTVCI(8) | Poisson's ratio - exponent on stress. |

12th card
1-10 F10.
11-20 F10.3

21-30
31-40
41-50
51-60
61-70
71-80
13th card

| $1-10$ | F10.3 | DTVCI(17) | Thermal expansion coefficient - exponent on <br> stress. <br> Thermal expansion coefficient - exponent on |
| :--- | :--- | :--- | :--- |
| $11-20$ | F10.3 | DTVCI(18) | Temperature. <br> $21-30$ |
| F10.3 | DTVCI(19) | Not used. |  |
| Etc. | F10.3 | DTVCI(20) | Not used. <br> Etc. in F10.3 format |

HITCAN User's Manual - Version I. 0
Variable


HITCAN User's Manual - Version I. 0

| Columns | Field Name | Value | Description |
| :---: | :---: | :---: | :---: |
| 31-40 | RHOD | . 141 | Interphase density is . $172 \mathrm{lb} / \mathrm{in}^{3}$. |
| 41-50 | ED11 | 37150000 | The longitudinal modulus is 37150000 $1 \mathrm{~b} / \mathrm{in}^{2}$. |
| 51-60 | ED22 | 37150000 | The transverse modulus is 37150000 $\mathrm{lb} / \mathrm{in}^{2}$. |
| 61-70 | GD12 | 14229546 | The shear modulus is $14229546 \mathrm{lb} / \mathrm{in}^{2}$. |
| 71-80 | GD23 | 14229546 | The shear modulus is $14229546 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | NUD12 | . 31 | Poisson's ratio is . 31. |
| 11-20 | NUD23 | . 31 | Poisson's ratio is . 31 . |
| 21-30 | CPD | . 205 | Heat capacity is . $205 \mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F}$. |
| 31-40 | KD11 | . 57 | Thermal conductivity longitudinal is . $57 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$. |
| 41-50 | KD22 | . 57 | Thermal conductivity transverse is .57 $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{~F} / \mathrm{in}$. |
| 51-60 | AD11 | . 0000032 | Thermal expansion coefficient longitudinal is . $0000032 \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}$. |
| 61-70 | AD22 | . 0000032 | Thermal expansion coefficient transverse is. 0000032 in/in/ ${ }^{\circ} \mathrm{F}$. |
| 71-80 | SD11t | 315000 | Longitudinal strength - tension is $315000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | SD11c | 390000 | Longitudinal strength - compression is $390000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 11-20 | SD22t | 315000 | Transverse strength - tension is $315000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 21-30 | SD22c | 390000 | Transverse strength - compression is $390000 \mathrm{lb} / \mathrm{in}^{2}$. |
| 31-40 | SD12s | 195500 | Shear strength is $195500 \mathrm{lb} / \mathrm{in}$. |
| 41-50 | SD23s | 195500 | Shear strength is $195500 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | RD11 | . 0 | ```Reference longitudinal stress is . 0 lb/in}\mp@subsup{}{}{2}``` |
| 11-20 | RD22b | . 0 | Reference transverse stress - region b is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 21-30 | RD22c | . 0 | Reference transverse stress - region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 31-40 | RD12b | . 0 | Reference shear stress - region b is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 41-50 | RD12c | . 0 | Reference shear stress - region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 51-60 | RD23b | . 0 | Reference shear stress - region b is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 61-70 | RD23c | . 0 | Reference shear stress - region c is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 71-80 | RD13b | . 0 | Reference shear stress - region b is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | RD13c | . 0 | Reference shear stress - region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2}$. |
| 1-10 | QD11 | . 0 | Reference longitudinal stress rate is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |

HITCAN User's Manual - Version I. 0

| Columns | Field Name | Value | Description |
| :---: | :---: | :---: | :---: |
| 11-20 | QD22b | . 0 | Reference transverse stress rate region $b$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 21-30 | QD22c | . 0 | Reference transverse stress rate region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 31-40 | QD12b | . 0 | Reference shear stress rate - region b is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 41-50 | QD12c | . 0 | Reference shear stress rate - region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 51-60 | QD23b | . 0 | Reference shear stress rate - region $b$ is $.01 b / i n^{2} s e c$. |
| 61-70 | QD23c | . 0 | Reference shear stress rate - region c is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 71-80 | QD13b | . 0 | Reference shear stress rate - region b is . $0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 1-10 | QD13c | . 0 | Reference shear stress rate - region $c$ is $.0 \mathrm{lb} / \mathrm{in}^{2} \mathrm{sec}$. |
| 1-10 | DTVCI (1) | . 5 | Modulus - exponent on stress rate is . 5. |
| 11-20 | DTVCI (2) | . 5 | Modulus - exponent on stress is . 5. |
| 21-30 | DTVCI (3) | . 5 | Modulus - exponent on temperature is . 5. |
| 31-40 | DTVCI (4) | . 0 | Strength - exponent on stress rate is . 0 . |
| 41-50 | DTVCI (5) | . 0 | Strength - exponent on stress is . 0. |
| 51-60 | DTVCI (6) | . 5 | Strength - exponent on tempeature is . 5 . |
| 61-70 | DTVCI (7) | . 5 | Poisson's ratio - exponent on stress rate is . 5 . |
| 71-80 | DTVCI (8) | . 5 | Poisson's ratio - exponent on stress rate is . 5 . |
| 1-10 | DTVCI (9) | . 5 | Poisson's ratio - exponent on temperature is . 5 . |
| 11-20 | DTVCI (10) | Blank |  |
| 21-30 | DTVCI(11) | Blank |  |
| 31-40 | DTVCI (12) | Blank |  |
| 41-50 | DTVCI (13) | . 5 | Heat conductivity - exponent on stress rate is . 5 . |
| 51-60 | DTVCI (14) | . 5 | Heat conductivity - exponent on stress is . 5. |
| 61-70 | DTVCI (15) | . 5 | Heat conductivity - exponent on temperature is . 5. |
| 71-80 | DTVCI (16) | . 5 | Thermal expansion coefficient exponent on stress rate is .5. |
| 1-10 | DTVCI (17) | . 5 | Thermal expansion coefficient exponent on stress is . 5. |
| 11-20 | DTVCI (18) | . 5 | Thermal expansion coefficient exponent on temperature is .5 . |
| 21-30 | DTVCI (19) | Blank |  |

# HITCAN User's Manual - Version I. 0 

| Columns | Field Name | Value | Description |
| :---: | :---: | :---: | :---: |
| 31-40 | DTVCI (20) | Blank |  |
| 41-50 | DTVCI (21) | Blank |  |
| 51-60 | DTVCI (22) | Blank |  |
| 61-70 | DTVCI (23) | Blank |  |
| 71-80 | DTVCI (24) | Blank |  |
| 1-10 | DTVCI (25) | Blank |  |
| 11-20 | DTVCI (26) | Blank |  |
| 21-30 | DIVCI (27) | Blank |  |
| 31-40 | DTVCI (28) | Blank |  |
| 41-50 | DTVCI (29) | Blank |  |
| 51-60 | DIVCI (30) | Blank |  |
| 1-10 | TREF | 70. | Reference temperature is $70{ }^{\circ} \mathrm{F}$. |

## CHAPTER 4

## EXECUTION PROCEDURE ON THE LeRC CRAY X-MP AND Y-MP

HITCAN is presently being executed in the batch mode on the CRAY X-MP and the CRAY Y-MP here at the NASA LeRC. Figure 4.1 shows both the input and output files for HITCAN. The primary input file is input. data. The file data.bank contains the data bank. restart. in is the restart file. This file is only read in if the program option card RESTART is specified. The file restart.out is the restart file that is created by HITCAN. This file is generated by HITCAN when there is a lack of global convergence or when the variable MSTART is used. pat. neut is a PATRAN neutral file. This file contains the necessary data to view the finite element model using PATRAN. The file pat. disp contains the nodal displacements. This file can be used for post-processing on PATRAN.

To compile and load HITCAN on the CRAY X-MP, the following nqs script can be used:

```
USER=userid PW=userpwd
QSUB-r jobid
QSUB-1T cputime
QSUB -1M memory
QSUB-eo
set -x
cft -d p /aerospace2/userid/hitcan.f
segldr -o /aerospace2/userid/hitcan hitcan.o
exit
```

The variable userid is the user's id on the CRAY X-MP. The variable userpwd is the user's password. jobid is the name of the job on the X-MP. cputime is the cpu time limit and memory
is the maximum memory size allowed. hitcan.f is the compiler
input file containing the Fortran source code to be compiled.
hitcan. 0 is the object file created by the compiler and hitcan is the executable file. Note that the all of the files are assumed to reside in the user's home directory.

To execute HITCAN on the X-MP, the following script can be used:

| \# USER-userid | PW=userpwd |
| :--- | :--- |
| \# QSUB-r | jobid |
| \# QSUB-1T | cputime |
| \# QSUB -1M | memory |
| \# QSUB-eo |  |
| set -x |  |


Figure 4.1: HITCAN/Input/Output File Structure

```
HITCAN User's Manual - Version I.O
cp /aerospace2/userid/restart.in fort.68
cp /aerospace2/userid/data.bank fort. }7
/aerospace2/userid/hitcan < /aerospace/userid/input.data
cp fort.18 /aerospace2/userid/pat.neut
cp fort.68 /aerospace2/userid/restart.out
cp fort.76 /aerospace2/userid/pat.disp
exit
```

To compile and load HITCAN on the CRAY Y-MP, the script below can be used:

```
USER=userid PW=userpwd
QSUB-r jobid
QSUB-1T cputime
QSUB -1M memory
QSUB-eo
set -x
cft -d p/wrk/userid/hitcan.f
segldr -o /wrk/userid/hitcan /wrk/userid/hitcan.o
exit
```

Here userid is the user's id on the $Y$-MP and userpwd is the user's password on the Y-MP. Note all of the files are assumed to reside in the user's workspace on the Y-MP. To execute HITCAN on the Y-MP, the following script can be used:

```
USER=userid PW=userpwd
QSUB-r jobid
QSUB-1T cputime
QSUB -1M memory
QSUB-eo
set -x
cd $W
mkdir tmp $$
cd tmp$$
cp/wrk/userid/restart.in fort.68
cp/wrk/userid/data.bank fort.70
/wrk/userid/hitcan </wrk/userid/input.data
cp fort.18 /wrk/userid/pat.neut
cp fort.68 /wrk/userid/restart.out
cp fort.76 /wrk/userid/pat.disp
cd /wrk/userid
rm -fr tmp$$
exit
```

Here all of the underlined variables are the same as before.

## HITCAN User's Manual - Version I. 0

CHAPTER 5

## OUTPUT DESCRIPTION

The following is a description of the HITCAN output.

1. Echo print of the input dataset to HITCAN prior to interpretation by HITCAN. This is triggered by specifying the program option card ECHO.
2. HITCAN logo and version number.
3. A list of the program option cards specified.
4. A summary of the model and load data input.
5. Number of words required to perform the analysis. If there are more words required for memory, a message is printed specifying the number of additional words needed.
6. Description of the finite element model created, including the ply layup for each node. Also, the corresponding temperature and pressure at each node are listed, if program option cards TEMPERATURE or PRESSURE are specified.
7. The record of execution beginning at the first load step is given for each load increment. By setting the variable arrays NPRT, NPRTS, NPRTP, and NPPLY the user can specify the output for each increment. $\operatorname{NPRT}(1, I)$ is the initial node of set I at which displacement output is desired, $\operatorname{NPRT}(2, I)$ is the final node. NPRTS is an array containing the nodes selected for output of the ply stresses. As in $\operatorname{NPRT}, \operatorname{NPRTS}(1, I)$ is the initial node and $\operatorname{NPRTS}(2,1)$ is the final node. By specifying NPRTP the user can select sets of nodes at which ply properties will be output. NPPLY contains the plies selected for output. $\operatorname{NPPLY}(1, J)$ is the initial ply and $\operatorname{NPPLY}(2, \mathrm{~J})$ is the final ply. For NPRT, NPRTS, NPRTP, and NPPLY a maximum of 10 sets in each is allowed. These variables are specified in card group 42.
8. If a modal analysis is performed, the following information is given:
a) The eigenvalue number and value.
b) The corresponding frequency in both radians per time and cycles per time.
c) The corresponding eigenvector, normalized so that the Lnorm is 1.0 .
d) The generalized mass associate with the normalization of the eigenvector.

## HITCAN User's Manual - Version I. 0

9. If a buckling analysis is performed, the following information is given:
a) The eigenvalue number and value.
b) The corresponding eigenvector, normalized so that the Lnorm is 1.0 .

## CHAPTER 6

## EXAMPLEPROBLEM \#1

Example $; 1$ demonstrates the thermal analysis of a composite shell structure using the HITCAN code. A curved shell ( 40 degree segment) has a radius of $120 \mathrm{in} .$, a width of $120 \mathrm{in} .$, and a thickness of 0.8 in . Both straight edges are clamped and both curved edges are free. Initially the shell is subjected to a temperature gradient of 20 deg. F. After 10 sec ., an external pressure load of 0.1 psi is applied to the top surface. The shell is made of Sic/Ti-15-3-3-3 composite material (Silicon Carbide fiber, Titanium matrix with $15 \%$ Vanadium, $3 \%$ Aluminum, 3\% Chromium, and 3\% Tin, and interphase with average properties of the fiber and the matrix). The composite laminate consists of 4 plies ( $0 / 0 / 90 / 90$ ) of equal thickness with 0.5 fiber volume ratio. The ply layup is such that the 0 degree plies are at the top and the 90 degree plies are on the bottom. The geometry, boundary conditions, loading, and ply layup are shown in Figure 6.1. The finite element model is shown in Figure 6.2. A portion of the output is shown after the input deck.


Figure 6.1: Example Problem Number 1


Figure 6.2: Finite Element Mesh For Example Number 1

# HITCAN User's Manual - Version I. 0 <br> INPUT DECK DESCRIPTION 

## PROGRAM OPTION CARDS

The program option cards chosen are:

```
TITLE
SPLATE
PLATE
PLYORDER
UNSYMMETRICAL
PRESSURE
TEMPERATURE
ENDOPTION
```


## CARD GROUP 1

The number of material systems (plies) to be described in Card Group 28 of this input deck is 2. One material system is required for the ply with a fiber orientation angle of $0^{\circ}$, another material system is required for the ply with a fiber orientation angle of $90^{\circ}$.

CARD GROUP 5

Two cross-sections will be used to define the shell, this is indicated by NSECT $=2$. Since, the model is described by the input $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and TB, IGRD is set to 4. The number of nodes along the $x$-axis is 9 , so $I U$ is set to 9 . Nine nodes are needed along the y -axis, so JU is equal to 9 . The finite element model is to begin at $x=0.0$ in. and end at $x=120.0$ in. These values are the variables XBEG and XEND.

CARD GROUP 6
The number of plies for one-half of the wall thickness (MAXPLY) is set to 2. This means that the number of plies for the bottom half of the shell will be 2 .

CARD GROUP 7
Since the program option card UNSYMMETRICAL was specified, the number of plies for the top half of the shell is required. Because the ply layup is to consist of 4 plies, and because MAXPLY is equal to 2 , the variable LMAX is set to 2 .

```
HITCAN User's Manual - Version I.0
```

CARD GROUP 10
In the this card group the number of load steps (NTISTP) is set to 2 . Since the degradation of material properties due to cumulative mechanical/thermal load cycles is not to be included in this analysis, the number of mechanical cycles (NMECHC) is set to 1 , and the number of thermal cycles (NTHERC) is also set to 1. The number of load increments (LINC) between load steps is 2. Since a restart file is not desired, the variable MSTART is set to 20. The variable MITER, the maximum number of iterations allowed for global convergence, is set to 10 . The tolerance on global convergence (TOL) is set to 1.0 .

CARD GROUP 16
The number of pressure data sets (NPRES) is 0 , since there are no edge loads in this analysis.

CARD GROUP 17
The number of temperature data sets (NTEMP) is 0 , since the temperature is input at the input points.

CARD GROUP 19
The number of boundary condition data sets (NBC) is 11 .
CARD GROUP 27
The array MSECT is set equal to $(5,5)$, thus each cross-section will be defined by 5 points. The next card is the number of elements between cross-section (NXSPC), in this example it is 8 . Input for the two cross-sections is provided in cross-section mid-plane and thickness form (specified by IGRD $=4$ ). The next 5 records are the points of the first crosssection. The seventh record is the number of elements between the next 2 cross sections. Since there is only 1 cross-section left the variable (NXSPC) is set to 0 . The final 5 records in this card group represent the geometry of the second cross-section.
hITCAN User's Manual - Version I. 0
CARD GROUP 28
The number of different material systems is 2. Each material system is represented by two records, thus four lines are required. The first record defines the location of the ply on the model by percent of thickness, length, and width. The first two values on this record refer to the initial and final percent thickness of the thickest grid point of the model. The next four values are the initial and final percent width and initial and final percent length. Since both plies are to be used over the entire shell, this record has the values $0.0,100.0,0.0,100.0,0.0$, and 100.0 . The second record specifies fiber type, matrix type, ply thickness, void volume ratio, fiber volume ratio, and orientation angle in degrees relative to the structural x-axis. Here both plies are identical, except for the fiber orientation angle. The fibers of the bottom plies are along the $x$-axis, while the top plies are transverse to the x -axis.

CARD GROUP 29
The ply stack-up order for the bottom half of the shell is designated by 2 plies starting at the bottom surface. This layup is in the array MPLY. MPLY is equal to ( 2,2 ), where these values are the material system identification numbers.

CARD GROUP 30
The ply stack-up order for the top half of the shell is designated by 2 plies starting at the top surface. This layup is in the array NPLY. NPLY is equal to ( 1,1 ), where these values are the material system identification numbers.

CARD GROUP 32
The time at each load step is given in this card group.
CARD GROUP 33
Since the program option cards PRESSURE and TEMPERATURE were used, this group must be given. In this card group the temperature and pressure are given using the variables TL, TU, PL, and PU. Each line consist of the variables TL, TU, PL, and PU. The number of lines in this card group is (no. of load steps) $x$ (number of input sections) $x$ (number of points per input section); i. e., $2 \times 2 \times 5=20$.

CARD GROUP 41
This CARD GROUP contains the boundary condition data. Each record consist of the beginning node number, the ending node number, the node numbering increment, and the degree-of-freedom which is constrained.

## HITCAN User's Manual - Version I. 0

## CARD GROUP 42

This card group controls the output. The nodal displacements are desired at nodes 5 through 32,37 through 45 , and 50 through 77 . The ply stresses are desired at node 41. Also, a PATRAN results file containing nodal displacements is desired at the end of the analysis.

## HITCAN User's Manual - Version I. 0

INPUT DECR FOR PROBLEM 非1

Note that the Card Group Nos. are not part of the input file.

BLOCK \#1 PROGRAM OPTION CARDS
TITLE=CYLINDRICAL SHELL WITH PRESSURE AND TEMPERATURE LOADING
SPLATE MODEL OPTION
PLATE
PLYORDER
UNSYMMETRICAL
PRESSURE
TEMPERATURE
ENDOPTION

## BLOCK 非2 CARD GROUPS

CARD
GROUP
NO.


1- 2
5- 2
5- 4 9 9
$5-\quad .0 \quad 120$.
6- 2
7- 2
10- $2 \begin{array}{llllll}10 & 1 & 2 & 20 & 10\end{array}$
10- 1 .
16- 0
17- 0
19- 10
27-5 5
27- 4
27. 0. $-41.68 \quad 236.4 \quad .8$

27- 0. -20.92 239.1 . 8
27- 0. 0. 240. 8
27- 0. 20.92 239.1 . 8
27- 0. $41.68 \quad 236.4$. 8
27- 0
27- 120. $-41.68 \quad 236.4$. 8
27- 120. -20.92 239.1 . 8
27- 120. 0. 240. . 8
27- 120. 20.92 239.1 . 8
27- 120. 41.68 236.4 . 8
28- $0 \quad 100$. $0.0 \quad 100 . \quad 100$.
$\begin{array}{rrrrrrr}28-\text { SICA TI15 } & .2 & .0 & .5 & 0 . & 100 .\end{array}$
28- SICA TI15 2.0 . 5 90.

Chapter 6
March, 1992

## HITCAN User's Manual - Version I. 0



HITEAN JUTPUT SUMMARY CYIETDRIES SHELL HITH PRESSURE ANG TEMPERATURE LOARDNG

INITIAL LOAS

PLY STRESSES (in DS8. wasts) IN THE MATERILL CCORDHMTE SYSTEA FOR NODE

| PLY No. | SIER-11 | SIEL-22 | SIEL-33 | SIEL-12 |
| :---: | :---: | :---: | :---: | :---: |
| : | -0.244E+04 | -0.264E+04 | 0.80eE+00 | 0.233E-04 |
| 2 | -0.156E+04 | -0.256E+06 | $0.0808+00$ | 0.678E-05 |
| 三 | 0.205E+03 | -0.251E+06 | $0.0808+00$ | -9.215E-06 |
| - | 1.199E*06 | -0.149E+04 | $0.0008+00$ | -.639E-05 |

41

OISPLACEMETTS AFTER THE IMTILHL LOND AT SERECTED NODES

| node to. | $\begin{gathered} x \\ (\ln .) \end{gathered}$ | $\begin{gathered} Y \\ (\ln .) \end{gathered}$ | $\begin{gathered} 2 \\ (\text { in. }) \end{gathered}$ | THETA-X <br> (rac.) | thesta-y <br> (rac.) | $\begin{aligned} & \text { Hicha } \\ & \text { ireat } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | -0.128E-01 | -0.225E-10 | 0.735E-01 | $0.729 E-11$ | -0.2325-92 | $0.994 E$ |
| - | -0.114E-01 | 0.228E-02 | 0.661E-81 | -0.147E-02 | -0.227E-82 | -0.225E |
| 7 | -0.961E-02 | 0.311E-02 | 0.447E-81 | -0.279E-02 | -0.164E-02 | - 0.658 c |
| 8 | -0.66TE-02 | 0.178E-02 | 0.149E-01 | -0.298E-02 | -0.13IE-92 | -0.287E- |
| $\bigcirc$ | -0.587E-36 | -0.122E-2E | 0.239E-26 | -0.519E-26 | -0.65iE-27 | -0.413E- |
| 10 | -0.362E-25 | 0.103E-24 | 0.168E-25 | 2.790E-26 | -0.292E-27 | 0.169E- |
| 11 | -.).342E-92 | -0.144E-03 | 0.21 TE-91 | 0.389E-02 | 0.285E-43 | 0.22TE- |
| 12 | -9.648E-02 | -0.222E-02 | 0.608E-01 | 2.352E-32 | -9.418E-83 | $0.1128-$ |
| 15 | -. $.811 \mathrm{E}-82$ | -0.196E-02 | 0.904E-81 | J.199E-92 | -9.107E-A2 | $0.293 E-$ |
| 24 | -9.867E-02 | -0.268E-20 | $0.1018+00$ | 2.553E-11 | -9.12TE-92 | $0.4925=$ |
| : 5 | -9.812E-92 | 0.196E-02 | $0.904 E-91$ | -0.199E-02 | -9.197E-32 | -0.29EE- |
| 16 | -J.648E-02 | 0.223E-02 | $0.608 E-81$ | - $0.352 E-02$ | -9.418E-t3 | -0.2125- |
| 27 | -. $.342 \mathrm{E}-92$ | $0.144 E-03$ | 0.21TE-21 | -9.389E-02 | 0.285E-A3 | -0.237E- |
| 18 | -9.362E-25 | -0.103E-24 | $0.168 \mathrm{E}-25$ | -0.790E-26 | -0.282E-27 | -0.169E- |
| 19 | -9.228E-25 | 0.117E-24 | 0.183E-25 | $0.483 E-25$ | -0.352E-27 | $0.7285-$ |
| 23 | -0.296E-02 | 0.262E-03 | 0.294E-41 | 0.379E-02 | -0.586E-44 | 0.186E- |
| 21 | -9.382E-02 | -0.173E-02 | $0.629 E-81$ | $0.452 E-02$ | 0.178E-43 | - .ecceor |
| 22 | -9.509E-02 | -0.184E-02 | $0.1808+80$ | 0.279E-02 | -0.308E-93 | 0.354 C |
| 23 | -0.551E-02 | -0.249E-10 | 0.215E+80 | $0.3705-11$ | - $0.513 \mathrm{E}-83$ | -.94C:-: |
| 24 | -. $.509 E-02$ | 0.18AE-02 | $0.1085+80$ | - $0.279 E-82$ | -4.308E-83 | -0.38료-1 |
| 25 | -9.332E-02 | 0.172E-02 | $0.629 E-01$ | -0.452E-02 | 9.170E-83 | -6.escer |
| 26 | - $0.286 E-02$ | -0.262E-03 | $0.194 E-41$ | -0.379E-02 | -0.586E-44 | -6.296E-1 |
| 27 | - $0.2255-25$ | -4.21TE-24 | 0.183E-25 | -9.483E-26 | -3.352E-3? | -0.72EE-1 |
| 25 | -3.205E-25 | 0.128E-24 | 0.1805-25 | 2.309E-26 | j.362E-28 | 0.63 EE-1 |
| 29 | -7.9T7E-03 | 0.326E-03 | 0.193E-11 | $0.346 E-02$ | 2.988F- 06 | $0.0385-1$ |
| $\pm 0$ | -0.183E-02 | -0.153E-02 | 0.620E-81 | 9.464E-02 | -0.486E-44 | 0.378 E - |

EXAMP10

HITCAN User's Manual - Version I. 0

| 31 | -0.242E-02 | -9.180E-82 | $0.2035+00$ | 0.3065-12 | -0.527E-04 | -.17YT0* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | -0.265E-22 | - $7.136 E-10$ | $0.2195+00$ | 0.155E-11 | -0.708E-84 | -.27yc-18 |
| 37 | -0.428E-33 | ग.117E-24 | 0.183E-25 | 0.368E-26 | -0.798E-36 | $0.21{ }^{1}$ |
| 38 | $0.321 E-12$ | 2.387E-03 | $0.188 E-12$ | 0.367E-82 | $0.404 E-12$ | -0.7ters |
| 29 | -0.156E-11 | -3.155E-82 | $0.625 E-81$ | $0.4695-42$ | -0.788E-12 | . $1495-18$ |
| 40 | -0.165E-11 | - $3.1798-02$ | $0.183 E+8{ }^{\circ}$ | $0.329 E-42$ | -0.901E-12 | - 0 , 75-12 |
| 41 | 0.310E-14 | 9.231E-14 | 0.128玉 ${ }^{\text {- }}$ - | $0.120 E-14$ | 0.861E-14 | 0.14nely |
| 42 | $0.1665-11$ | $2.179 E-82$ | $0.185 E+00$ | - $0.324 \mathrm{E}-82$ | $0.896 E-12$ | -4 Aris-12 |
| 43 | $0.2565-11$ | 2.155E-92 | $0.625 E-81$ | -0.069E-02 | $0.7778-12$ | $0.248-11$ |
| 46 | -0.319E-12 | -4.387E-83 | - 188E- ${ }^{\text {d }}$ | - $0.367 E-82$ | -0.4E1E-12 | - 0.778 |
| 45 | $0.428 E-33$ | - $0.157 E-29$ | - .183E-25 | -4.3c8E-26 | 0.798t-34 | - 940-15 |
| 50 | 0.2658-02 | 9.236E-20 | - .149E40 | - $0.1595-11$ | $0.7085-4$ | - .27y-31 |
| 51 | $0.2425-02$ | 9.188E-02 | 0.185E400 | - 0 .386E-82 | - .527E-94 | - 3 Hrex |
| 52 | 0.183E-02 | 2.253E-02 | $0.6285-01$ | -0.46FE-82 | 0.486E-64 | c.572x-9 |
| 53 | 0.977E-93 | - - . 326E-03 | $0.195 E-61$ | - $0.3465-42$ | -0.4e0E-46 | 0.a3nE-4 |
| 54 | 0.105E-2E | -.3.118E-24 | $0.1805-25$ | - $0.309 E-26$ | -0.3625-28 | 0.658-04 |
| 55 | j .223E-25 | 2.117E-24 | $0.1835-25$ | - .493E-26 | 0.352E-27 | - $0.7208-4$ |
| 56 | 0.2085-02 | 2.262E-83 | 0.294E-31 | $0.3795-82$ | 0.58 EE -4 | - 0.10 ce-4 |
| 57 | 0.382E-02 | - 0.171 E-02 | 0.629E-01 | 0.452E-92 | - $0.1708-63$ | - . ACSE-1 |
| 58 | 0.5AYE-62 | - $0.189 \mathrm{E}-12$ | -.208E+00 | 0.2795-02 | 0.3085-83 | - $0.3595-4$ |
| 59 | 0.551E-02 | 9.249E-10 | 0.225E+ 00 | -0.370E-11 | 0.513E-03 | -.84CF-12 |
| 60 | $0.509 E-42$ | 2.184E-02 | - .2.40E+00 | - $0.2795-82$ | 0.30aE-03 | - Syex-4 |
| 61 | 0.382E-42 | 0.271E-02 | 0.629E-01 | -0.452E-42 | -. $0.170 E-83$ | - .acreoty |
| 62 | 0.206E-82 | - $0.262 E-83$ | - .184E-1 | - $0.379 E-82$ | -.586E-A4 | 6.21cras |
| 63 | -.25E-25 | - 0.15 EE-24 | - 24xs-25 | - 0 .415E-28 | 0.352E-27 | - 3 2c-4 |
| 64 | 0.362E-25 | j.183E-24 | 0.168E-25 | -.790E-26 | $0.2025-27$ | -4.168E-85 |
| 65 | $0.342 E-A 2$ | -4.144E-03 | 0.217E-31 | 0.389E-42 | -0.285E-03 | -0.2275-13 |
| $00^{\circ}$ | $0.648 E-02$ | - - . 225E-02 | 0.608E-01 | 0.352E-82 | 0.418E-43 | -0.295-85 |
| 07 | 1.811E-A2 | -1.196E-02 | $0.904 E-01$ | 0.199E-82 | $0.107 E-02$ | -0.235E-44 |
| 56 | 0.867E-22 | $\therefore .268 E-10$ | 2.101E+00 | -0.551E-玉1 | 0.127E-92 | 0.091 -11 |
| 09 | 0.811E-92 | 2.196E-02 | $0.904 E-11$ | -6.199E-82 | 0.207E-02 | 0.293504 |
| 70 | 0.64EE-02 | 9.201E-02 | $0.6085-81$ | -0.3585-12 | $0.4285-03$ | 0.1785-95 |
| 11 | $0.342 E-02$ | :.144E-03 | $0.217 E-01$ | -0.389E-12 | -0.285E-03 | - -2TE-A3 |
| 72 | 0.362E-2E | -4.103E-24 | 0.168 E 25 | -0.790E-26 | $0.2028-27$ | 0.16sE-03 |
| 73 | 0.587E-25 | 1.128E-25 | $0.2395-26$ | $0.519 E-26$ | $0.651 E-27$ | -0.42x-83 |
| 74 | 0.66TE-02 | -9.178E-02 | $0.299 E-81$ | 0.298E-02 | 0.151E-02 | - 0.24 ra -13 |
| 75 | 0.961E-92 | - $9.311 E-02$ | 0.4WTE-01 | 0.274E-E2 | $0.164 E-02$ | - $0.68 \mathrm{cr}-04$ |
| 76 | 0.119E-12 | - $0.2885-02$ | $0.662 E-12$ | - 147E-22 | 0.227E-92 | - 0.208504 |
| 77 | 0.120E-81 | 2.215E-10 | $0.735 E-11$ | - 0.73 EE-11 | 0.232E-02 | - 2 ssuc-11 |

TITE REOUIRED : : : LOOP TNRU METEM
DETER. THE DISR. EA MHOST
NELYSLEE THE FIRST TITE STEP

| LOND INCLEMENT MURAES | 1 |
| :---: | :---: |
| TME STEP | 2 |
| CYELE Munat | 1 |
| TIIE | 5.0880800 |

PIY STRESSES (in pss. UnIts! IM THE MATERILL COBRDMUTE SYSTEA FOR NODE 41

| PYY \%0. | SILI-11 | 535-22 | SIEL-33 | S5ER-12 | 558-23 | Sx-ts: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.144E+86 | -0.2055+06 | 0.8cue+00 | 3.133E-04 | -t.508E-49 | . 5 |
| 2 | -0.156E+06 | -0.257E+04 | $0.888 E+00$ | 2.431E-05 | - $0.189 \mathrm{E}-8$ | - 0.278 |
| $\underline{7}$ | $0.285 E+03$ | -0.251E+04 | $0.800 E+80$ | -9.325E-06 | -0.129E-8 | 0.10sE |
| 6 | $0.197 E+04$ | -0.149E+04 | $0.808 E+60$ | $0.616 E-05$ | - $0.56 \mathrm{EE}-9$ | - 5 - |

HITCAN JUTPUT SUMMARY
CILORICAL SHELL WITH PRESSURE ND TEMPERATURE LOADLKE

| LOAD INCREMENT NURAER | 1 |
| :---: | :---: |
| THE STE? | 2 |
| EYCLE MJTEER | 1 |
| time | 5.0000888 |

TOTAL OISPLACEMENTS FOR SELECTED NOYES

| NODE NO. | $\begin{gathered} x \\ (\ln .) \end{gathered}$ | $\begin{gathered} Y \\ \text { (in.) } \end{gathered}$ | $\underset{(\operatorname{Ln} .)}{\tau}$ | THETA-X <br> (rac.) | TKETA-Y <br> (resed | $\begin{aligned} & \text { tiera } \\ & \text { irea } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | -0.120E-01 | -0.2185-10 | 0.732E-81 | 9.742E-11 | -0.25EE-82 | -.9458- |
| - | -0.214E-01 | 0.2z3E-92 | 0.658E-81 | -9.147E-82 | -0.22JE-02 | -0.car |
| 7 | -0.961E-02 | 0.5318-02 | $0.446 E-81$ | - $0.2735-02$ | -0.2CHE-02 | -0.45se- |
| 3 | -0.667E-02 | 0.278E-02 | $0.149 E-81$ | - $0.298 E-02$ | -0.131E-02 | -0.287E- |
| 9 | - $0.590 \mathrm{E}-26$ | -0.1205-25 | 0.257E-26 | - $. .519 \mathrm{E}-25$ | -0.651E-27 | -0.014E- |
| 12 | -0.363E-25 | 0.203E-24 | $0.267 E-25$ | 9.789E-26 | -0.285E-27 | - 26.1 |
| :2 | -0.342E-22 | - $1.2435-03$ | 0.216E-01 | 9.389E-02 | 0.284E-83 | 0.22IE- |
| 12 | -0.648E-02 | -0.2285-02 | 3.607E-91 | j.351E-02 | -0.418E-43 | -.222 |
| 13 | -0.812E-A2 | -0.195E-02 | 0.902E-81 | 3.298E-02 | -0.107E-0.? | 0.2 |
| 14 | -0.8cae-02 | -0.26TE-10 | $0.102 E+00$ | 2.563E-11 | -0.12FE-82 |  |


| 15 | -0.821E-02 | 0.195E-82 | $0.908 \leq-91$ | -0.198E-02 | -9.187E-82 | -0.2sve-at. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | -0.64eE-02 | 0.220E-02 | $0.607 E-91$ | -0.351E-02 | - - .418E-83 | -0.112--93 |
| 17 | -0.342E-02 | 0.143E-03 | $0.22 \mathrm{cE-a1}$ | -*.389E-02 | $0.284 E-13$ | -0.22]-03 |
| 18 | - $0.363 E-25$ | -0.183E-24 | 0.26JE-25 | -0.789E-26 | - $.283 E-27$ | - 0.265003 |
| 19 | - $0.2238-25$ | 0.117E-24 | 0.183E-25 | 0.4E2E-26 | -0.352E-27 | 0.7cricol |
| 20 | -0.286E-02 | 0.262E-83 | $0.199 E-91$ | 0.373E-12 | - 0.585 Cos | -.1ect-03 |
| 21 | -0.382E-02 | -0.170E-02 | $0.627 E-81$ | 0.452E-02 | 9.278E-83 | - .ecreon |
| 22 | - $0.509 E-02$ | -0.183E-02 | 0.108E+00 | 0.279E-02 | -0.308E-83 | -.3845-46 |
| 23 | - $0.551 E-02$ | -0.249E-10 | $0.1158+00$ | $0.3765-11$ | -0.523E-83 | -.481-12 |
| 24 | - $0.589 \mathrm{E}-72$ | 0.183E-02 | $0.1085+80$ | -0.279E-02 | - $0.3885-05$ | - 03805 |
| 25 | -0.382E-02 | 0.178E-82 | $0.627 E-81$ | -0.452E-02 | 0.178E-03 | -0.ecre-94 |
| 26 | - $* .286 E=02$ | -0.262E-83 | 0.194E-11 | -0.378E-02 | -0.585E-04 | -0.1805-03 |
| 27 | -9.228E-25 | -0.117E-24 | $0.183 \mathrm{E}-25$ | -0.4825-26 | - $0.352 \mathrm{E}-27$ | -0.72TE-94 |
| 28 | -9.105E-25 | 0.217E-24 | 0.18 EE -25 | 0.307E-26 | 0.362E-28 | 0.6515-4 |
| 29 | - $.978 \mathrm{E}-03$ | 0.327E-03 | $0.193 E-81$ | 0.395E-62 | $0.480 E-84$ | 0.4348-84 |
| 30 | -9.183E-02 | -0.252E-02 | $0.619 \mathrm{E}-01$ | 0.463E-02 | -0.486E-04 | $0.37 \times \pm 4$ |
| 32 | -9.292E-02 | -0.179E-02 | 0.203E+00 | $0.305 E-02$ | -0.528E-04 | - .1795-44 |
| 32 | -9.265E-02 | -0.136E-10 | 0.2198480 | $0.158 E-11$ | -0.788E-84 | 0.28at-11 |
| 37 | -*.428E-33 | $0.217 E-24$ | $0.1825-25$ | $0.367 E-26$ | -0.797E-36 | -.2015-11 |
| 38 | 9.328E-12 | $0.384 E-03$ | 0.18sE-91 | 0.366E-02 | 0.399E-12 | -0.7955-12 |
| 39 | -0.156E-11 | -0.155E-02 | 0.624E-42 | 0.4GEE-02 | -0.795E-12 | 0.15aE-21 |
| 40 | -0.165E-11 | -0.179E-02 | $0.103 E+80$ | $0.323 E-02$ | -0.913E-12 | - 0 .ecce-12 |
| 41 | 0.389E-14 | $0.2515-14$ | $0.128 E+90$ | 0.127E-14 | 0.560E-14 | - 2 24E-11 |
| 42 | 0.166E-11 | 0.179E-82 | 0.103E+08 | -0.323E-02 | 0.90TE-12 | - $0.665-12$ |
| 43 | 0.256E-11 | 0.155E-82 | 0.62GE-A1. | -0.4GEE--82 | 0.795E-12 | -.25aE-21 |
| 44 | - $0.326 E-12$ | -0.3s8E-03 | $0.185 E-41$ | -0.366E-02 | -0.396E-12 | -0.796E-12 |
| 45 | 2.428E-33 | -0.11JE-24 | 0.182E-25 | -0.367E-26 | 0.79TE-34 | 0.201E-11 |
| 50 | 2.265E-02 | $0.135 E-10$ | 0.219E+08 | -0.257E-11 | 0.789E-04 | 0.280\%-11 |
| 51 | 1.242E-02 | 0.179E-02 | 0.103E+08 | -0.305E-02 | 0.528E-04 | 0.179E-44 |
| 52 | 9.183E-02 | 0.152E-02 | 2.619E-81 | -0.463E-02 | 0.486E-94 | 0.374E-64 |
| 53 | 1.978E-03 | -0.32TE-03 | 2.193E-81 | -0.345E-02 | -0.480E-04 | $0.4315-94$ |
| 54 | 9.105E-25 | -0.117E-24 | 3.189E-25 | -0.307E-26 | -0.362E-28 | $0.635 E-44$ |
| 55 | 2.223E-25 | $0.117 E-24$ | 9.183E-25 | 0.462E-26 | $0.3535-27$ | -0.72rE-A4 |
| 56 | 1.286E-02 | 0.262E-83 | 1.194E-01 | 0.378E-02. | 0.585E-44 | -0.1865-43 |
| 57 | 0.382E-02 | -0.179E-02 | 0.627E-91 | 0.452E-02 | -0.178E-03 | - . . 6 EEAC |
| 58 | 0.509E-02 | -0.183E-02 | 0.108E+00 | 0.279E-02 | 0.3 E8E-03 | -0.39xE-94 |
| 59 | 0.551E-02 | 0.249E-10 | 9.115E+00 | -0.376E-21 | 0.5]5E-43 | -.98te-12 |

## HITCAN User's Manual - Version I. 0



HITCAN OUTPUT SUMMARY




| PLY NO: | SIER-11 | SIEC-22 | SIER-33 | 5751-12 | SIEL-23 | Stime: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.143E+04 | -0.266E+A4 | - .808E+80 | 0.133E-04 | -0.508E-09 | -T.SCCE |
| 2 | -0.1585+06 | - $0.258 E+64$ | 0. 0 ces+et | $0.685 E-65$ | -0.189E-08 | -0.1295 |
| 3 | $0.1665+03$ | -6.152E+04 | 0.88BE+98 | -0.435E-06 | -0.1295-08 | 1.2e9E |
| 4 | $0.1958+04$ | -0.149E409 | 0.8E日E+90 | 0.597E-85 | -0.56*E-99 | 0.5185 |

March, 1991

## HITCAN User's Manual - Version I. 0

HITCAN JUTPUT SUMMARY


| LOAS INCRETEAT NUREER | 2 |
| :---: | :---: |
| THIE STEP | 2 |
| Crele murack | 1 |
| TIIE | 10.0808088 |

TOTAL DESHLACEIEMTS FOR SELEGTED MODES

| node ho. | $\begin{gathered} x \\ \text { (in_l } \end{gathered}$ | $\begin{gathered} Y \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} z \\ (\operatorname{Ln}-\mathrm{d}) \end{gathered}$ | THETA-X <br> (rea.) | ThETA-Y <br> (reac) | THETA-2 <br> (race) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | -0.22aE-91 | -0.218E-10 | $0.738 E-91$ | $0.756 \mathrm{E}-11$ | -0.235E- 02 | 0.894E-21 |
| - | -0.114E-01 | 0.229E-02 | $0.6565-11$ | -0.146E-02 | -0.228E-82 | -0.285-44 |
| 7 | -*.962E-02 | 0.3IEE-02 | $0.44 \mathrm{E}-01$ | -0.272E-92 | -0.164E-02 | -0.crye-an |
| 8 | -6.667E-02 | 0.178E-02 | - 0.2 GEE-21 | -4.297E-82 | -6.153E-82 | -0.24re-83 |
| 9 | -0.592E-25 | -0.1298-25 | - .235E-26 | -. .5L8E-26 | -0.658E-27 | -0.414E-13 |
| 10 | -0.363E-25 | 0.103E-24 | 0.16TE-25 | -.738E-26 | -9.203E-27 | -.265E-95 |
| 11 | -0.342E-92 | -0.143E-03 | 1.216E-91 | -.388E-02 | 0.284E-03 | -.2ETE-A3 |
| 12 | -0.669E-42 | -0.228E-02 | $0.636 E-81$ | 0.358E-62 | -0.418E-03 | 0.2125-93 |
| 13 | -0.222E-12 | -0.195E-02 | 1.988E-91 | 0.198E-02 | -0.107E-02 | -.2s+E-94 |
| 14 | -0.8GEE-02 | -0.265E-30 | $0.102 E+00$ | $0.5738-11$ | -0.12JE-02 | 0.0935-11 |
| 15 | -0.822E-A2 | 0.195E-02 | 0.900E-01 | -0.298E-02 | -0.107E-02 | -0.294E-44 |
| 16 | -ง.449E-*2 | 0.220E-02 | 0.60 ce-01 | -0.350E-02 | -0.42aE-03 | - ${ }^{\text {. } 212 E-83 ~}$ |
| 17 | -1.342E-82 | 0.243E-03 | $0.2285-01$ | -0.388E-02 | $0.284 E-03$ | - $0.227 E-83$ |
| 18 | -4.363E-2E | -0.103E-24 | 0.167E-25 | - $0.788 \mathrm{E}-26$ | -0.285E-27 | -0.165E-83 |
| 19 | - 0. - | 0.21 TE-24 | $0.1835-25$ | $0.48 \mathrm{E}-26$ | -0.352E-27 | $0.72{ }^{\text {ceat }}$ |
| 28 | - $0.286 \mathrm{E}-\mathrm{-22}$ | 0.263E-03 | $0.194 E-41$ | $0.377 E-82$ | -0.583E-94 | 0.28c5-83 |
| 21 | -4.383E-72 | -0.173E-02 | $0.625 E-91$ | 0.451E-02 | $0.270 \mathrm{E}-8$ |  |
| 22 | -4.5a9E-02 | -0.183E-02 | $0.188 E+80$ | $0.278 E-02$ | -0.3caE-83 | - .35ex-64 |
| 23 | -0.552E-02 | -0.248E-10 | 0.124E+00 | 0.382E-11 | -0.513E-83 | 0.95x5-12 |
| 24 | -0:585ESO | 0.185E-02 | 0.1005400 | -4.278E-02 | -0.308E-03 | -0.3985-44 |
| 25 | -0.583E-62 | 0.178E-02 | $0.626 E-81$ | - $0.451 \mathrm{E}-02$ | 0.178E-83 | -9.ccesee4 |
| 26 | -0.286E-82 | -0.263E-03 | 0.194E-41 | -0.37TE-82 | -0.583E-04 | -0.28ce-03 |
| 27 | -0.22EE-25 | -0.21TE-24 | 0.1825-25 | -0.4E0E-26 | -0.352E-27 | -0.72x-04 |
| 28 | - $0.185 \mathrm{E}-25$ | $0.117 E-24$ | 0.283E-25 | - .306E-26 | 0.362E-28 | -.ctre-al |
| 29 | -4.978E-73 | 0.327E-03 | $0.1975-81$ | 0.344E-42 | $0.399 E-99$ | 0.451504 |
| 30 | - $0.183 \mathrm{E}-\mathrm{t2}$ | -0.152E-02 | $0.6185-01$ | 0.462E-02 | -0.4ecE-*4 | $0.585 \mathrm{c}-04$ |
| 31 | -4.292E-82 | -0.179E-02 | $0.103 E+90$ | $0.305 E-82$ | -0.528E-94 | 0.27 TE-94 |
| 32 | -4.265E-42 | -0.136E-10 | 0.119E+00 | 0.160E-11 | -0.701E-04 | - 2 2ec-11 |
| 37 | -0.42rE-3I | 0.217E-24 | 0.182E-25 | 0.36GE-26 | -0.796E-34 | 0.2ere-11 |
|  | 9.535E-12 | $0.389 E-83$ | 0.188E-01 | 0.365E-02 | $0.394 E-12$ | -0.enct-12 |
| Chapter 6 |  |  |  |  | March, 1992 |  |

EXAMP15

HITCAN User's Manual - Version I. 0

| 39 | -0.156E-11 | -t.254E-02 | $0.6225-81$ | 0.467E-12 | -0.2118-12 | 0.2175-11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - 0 | -0.16EE-11 | -4.179E-82 | $0.1035+68$ | 0.323E-92 | - .924 E -12 | - 0 .ense-12 |
| 41 | $0.303 E-14$ | 0.253E-14 | $0.219 E+00$ | 0.2205-14 | 0.557E-14 | 0.14st-31 |
| 42 | $0.2665-11$ | 0.275E-82 | 0.1035+80 | -0.325E-02 | 0.919E-12 | -0.879E-19 |
| 45 | 0.156E-11 | 0.25GE-92 | $0.6295-91$ | - $0.467 E-42$ | 0.c09E-12 | -.178-1] |
| ¢ | -0.333E-12 | -0.389E-03 | 0.183E-01 | -0.365E-42 | -0.391E-12 | -0.84cr-19 |
| 45 | 0.427E- 35 | - $0.115 \mathrm{~F}-24$ | 0.1825-25 | -4.36EE-26 | $0.796 E-34$ | $0.2824-31$ |
| 58 | 0.265E-12 | 0.13 ce-10 | $0.2295+80$ | - $0.255 \mathrm{E}-11$ | 0.782E-94 | 0.2145 |
| 51 | $0.2925-42$ | 0.279E-82 | $0.1058+00$ | -0.305E-92 | $0.593 E-94$ | -.275E-4 |
| 52 | 0.183:E.12 | 0.252E-82 | 0.6185-01 | -0.462E-92 | 1.48ce-44 | - crsead |
| 53 | 0.978E-83 | -0.32E-83 | 0.2925-91 | - .304E-42 | -0.3995-04 | 0.451504 |
| 59 | 0.105E-25 | - $0.127 E-29$ | 0.28 Et-25 | - $0.385 \mathrm{E}-26$ | - 0.3 EIE-28 | -.651-0 |
| 55 | $0.2258-25$ | 0.217E-24 | $0.1825-25$ | 0.450E-25 | $0.3598-27$ | -6.75.E-0 |
| 55 | 0.286E-82 | $0.265 E-83$ | 0.194E-21 | 0.377E-92 | 0.533E-*4 | -0.18ct-0! |
| 57 | $0.383 E-82$ | - 0.278 E -02 | $0.6265-11$ | 0.653E-12 | -0.170E-93 | -6.ccerem |
| E3 | $0.509 E-72$ | - $0.1835-12$ | $0.1885+00$ | $0.27 \pm E-42$ | $0.3885-83$ | -0.354m |
| 59 | $0.8535-92$ | $0.248 E-18$ | $0.134 E+00$ | -0.344E-11 | 0.EISE-13 |  |
| 60 | $0.509 E-92$ | 0.183E-02 | $0.108 E+80$ | - $0.2785-42$ | -.358E-83 | 3.35es-4 |
| 62 | 0.383E-A2 | 0.27EE-72 | 0.626E-41 | -4.451E-42 | -0.276E-83 | -.acat-9 |
| 62 | 0.28cE-02 | - $0.263 \mathrm{E}-83$ | $0.194 E-91$ | -4.577E-42 | 0.535E-94 | 0.20xs-0! |
| 63 | 0.225E-25 | - 0.2 2FE-24 | 0.182E-25 | -0.4305-26 | 0.352E-27 | 0.75 ce-4 |
| 64 | $0.363 E-25$ | 0.285E-24 | $0.167 E-25$ | c.7EaE-26 | 0.2038-27 | -0.269E00. |
| 65 | 0.3425-82 | -0.143E-93 | 0.22CE-81 | -.3sue-02 | -9.23AE-A3 | -0.23TE-8! |
| 66 | 0.649E-82 | -0.28EE-02 | 0.63ck-81 | 0.358E-02 | -.418E-43 | -0.2225-01 |
| 67 | 0.82zE-02 | -0.195E-02 | 0.98AE-81 | 0.298E-12 | 0.107E-42 | -4.2945-4 |
| os | 0.8 ME-82 | $0.255 E-10$ | 0.101E+00 | -0.571E-II | 0.127E-92 | 0.498E-1: |
| 09 | 0.812E-92 | 0.195E-82 | $0.908 E-02$ | -0.198E-02 | 0.18TE-92 | 0.29450 |
| 7: | 0.649E-02 | 9.223E-02 | $0.606 E-01$ | -0.350E-82 | $0.418 E-43$ | 0.2125-6: |
| $\because$ | 9.342E-92 | 9.143E-03 | 0.236E-31 | -0.389E-42 | -0.284E-43 | 0.217E-0: |
| $\because$ | 0.363E-25 | -0.183E-24 | 0.16TE-25 | --.788E-26 | $0.2838-27$ | 0.2650 |
| i3 | 0.592E-26 | 0.2295-25 | 0.235E-26 | 0.5188-26 | 0.650E-27 | -0.414E-9 |
| i4 | 0.667E-12 | -0.178E-02 | $0.1485-11$ | 0.297E-82 | 0.231E-t2 | -0.287E-0 |
| is | $0.962 E-82$ | -0.312E-02 | $0.446 E-01$ | 0.27 E-02 | $0.16 G E-42$ | -0.45\% ${ }^{-0.4}$ |
| 76 | $0.114 E-01$ | -4.229E-02 | 0.656E-61 | $0.146 E-82$ | 0.22]E-92 | -0.2255-6 |
| 7 | 0.128E-01 | 0.22E-10 | -.738E-01 | - 0.75 CE-11 | 0.253E-42 | 0.994-1 |

## HITCAN User's Manual - Version I. 0

## EXAMPLE PROBLEM \#2

Example \#2 demonstrates the basic characteristics of a dataset required to run the S3DSOLID model option in the HITCAN code. This second example is of a thick ring subjected to centrifugal loading at an angular velocity of $20,000 \mathrm{rpm}$. The ring has an inside radius of 2.875 in . and an outside radius of 3.475 in . The ring is made of Sic/Ti-15-3-3-3 composite material (Silicon Carbide fiber, Titanium matrix with $15 \%$ Vanadium, $3 \%$ Aluminum, $3 \%$ Chromium, and $3 \% \mathrm{Tin}$, and interphase with average properties of the fiber and the matrix). The composite laminate consists of 7 plies each with a fiber volume ratio of 0.5. All of the fibers have an orientation angle of 90 deg. w.r.t. the $x$-axis. Since this is an axisymmetric problem, only a small sector ( 3 degrees) of the ring was modeled. The geometry and the boundary conditions are shown in Figure 6.3. The finite element model is shown in Figures 6.4 and 6.5. A portion of the output is shown after the input deck.


Figure 6.3: Example Problem Number 2


Figure 6.4: Element Numbers For Example Number 2

HITCAN User's Manual - Version I. 0


Figure 6.5: Node Numbers For Example Number 2

HITCAN User's Manual - Version I. 0

INPUT DECK DESCRIPTION
PROGRAM OPTION CARDS
The program option cards chosen are:
TITLE
S3DSOLID
BRICK
PLYORDER
UNSYMMETRICAL
TRANSFORMATION
ANGULAR
ENDOPTION

## CARD GROUP 1

The number of material systems to be described in Card Group 28 of this input deck is 2. The two material systems are identical, except for the ply thicknesses. The first material system has a ply thickness of 0.05 in., the second has a ply thickness of 0.1 in.

CARD GROUP 4
Two input planes will be used to define the ring, this is indicated by NIPL $=2$. The number of output sections (NOSC) was chosen to be 3. The number of elements along the $y$-axis is 3 , so NEYY is set to 3 . Six elements are needed through the thickness, so NETT is equal to 6.

CARD GROUP 6
The number of plies for one-half of the wall thickness (MAXPLY) is set to 4. This means that the number of plies for the bottom half of the ring will be 4.

CARD GROUP 7
Since the program option card UNSYMMETRICAL was specified, the number of plies for the top half of the ring needs to be given. Because the ply layup is to consist of 7 plies the variable LMAX is set to 3 .

CARD GROUP 10
In the this card group the number of load steps (NTISTP) is set to 1 , the number of mechanical cycles (NMECHC) is set to 1 , and the number of thermal cycles (NTHERC) is also set to 1 . The number of load increments (LINC) is 1 . Since a restart file is not desired, the variable MSTART is set to 20 . Gie variable MITER, the maximum number of iterations allowed for global convergence, is set to 10 . The tolerance on global convergence (TOL) is set to 1.0 .

HITCAN User's Manual - Version I. 0
CARD GROUP 18
The number of transformation data sets (NTR) is 1 . Coordinate transformation is needed to apply skewed boundary conditions on the right edge of the sector.

CARD GROUP 19
The number of boundary condition data sets (NBC) is 11.
CARD GROUP 26
In this card group, the first card contains the number of elements between output sections and the $x$-coordinate of the output sections are specified. Between output sections 1 and 2, 2 elements are desired. Between sections 2 and 3, 4 elements are needed. Finally, between sections 3 and 4,2 elements are needed. The array NXSPC will be equal to (2, 4, 2). The x-coordinate of each output section is in the array $X$. This array has the values
(.0, . $1, .5, .6$ ). The next card is the array LSECT. This variable contains the number of sets of input points for each input plane. For the ring, 2 sets of input points for each input plane was chosen. Thus LSECT is equal to (2, 2). The next two cards are the array MSECT. This array contains the number of input points in each set of input points. The first line is for the bottom input plane. Here each set of input points will contain 4 points. The second line is for the top input plane. For this input plane, each set of input points will again have 4 input points. The last card contains the coordinates of an input point. The first 4 lines is for the first set of input points of the bottom input plane. Each line contains the coordinates of 1 input point. The next 4 lines are the coordinates of the input points of the second set of input points. The next 8 records are the input points of the top input plane.

CARD GROUP 28
The number of different material systems is 2. Each material system is represented by two records, thus four lines are required. The first record defines the location of the ply on the model by percent of thickness, length, and width. The first two values on this record refer to the initial and final percent thickness of the thickest grid point of the model. The next four values are the initial and final percent width and initial and final percent length. Since both plies are to be used over the entire shell, this record has the values $0.0,100.0,0.0,100.0,0.0$, and 100.0 . The second record specifies fiber type, matrix type, ply thickness, void volume ratio, fiber volume ratio, and orientation angle in degrees relative to the structural $x$-axis. Here both plies are identical, except for the ply thickness. The top and bottom plies are 0.05 in. thick, while all the other plies are 0.1 in. thick.

```
HITCAN User's Manual - Version I.O
```

CARD GROUP 29
The ply stack-up order for the bottom half of the ring is designated by 4 plies starting at the bottom surface. This layup is in the array MPLY. MPLY is equal to (1, 2, 2, 2).

CARD GROUP 30
The ply stack-up order for the top half of the ring is designated by 3 plies starting at the top surface. This layup is in the array NPLY. NPLY is equal to (2, 2, 1).

CARD GROUP 32
The time at each load step is given in this card group.
CARD GROUP 39
This card group contains the information required for centrifugal loading. The first line defines the axis about which the structure is rotating. The second line contains the rotational velocity at each load step in revolutions per sec.

CARD GROUP 40
Since the TRANSFORMATION program option card was used, this group must be given. This card group provides for local coordinate transformation at various nodes. The first line consists of the variables IBEG, IEND, INCR, and IAXIS. Here IBEG is set to 4 , IEND is set to 252 , INCR is set to 4 , and IAXIS (the axis about which the coordinates are to be transformed) is set to 1 . IAXIS corresponds to the $x$-axis. The second line has the angle of rotation, which is 87.0 degrees.

CARD GROUP 41
This CARD GROUP contains the boundary condition data. Each record consist of the beginning node number, the ending node number, the node numbering increment, and the degree-of-freedom which is constrained. Note that for those nodes, which had their coordinate systems transformed, the degree-of-freedoms which are constrained will be in the transformed coordinate system.

## CARD GROUP 42

This card group controls the output. Here the nodal displacements are desired at nodes 1 through 252. The ply stresses are desired at nodes $17,89,125$, and 161. The constituent material properties and the constituent stresses of ply number 1 are needed at nodes 53 and 197 .

## HITCAN User's Manual - Version I. 0

INPUT DECK FOR PROBLEM 非2

Note that the Card Group Nos. are not part of the input file

BLOCK \#1 PROGRAM OPTION CARDS
TITLE=THICK RING SUBJECTED TO A CENTRIFUGAL LOADING
S3DSOLID MODEL OPTION
BRICK
PLYORDER
UNSYMMETRICAL
TRANSFORMATION
ANGULAR
ENDOPTION

## BLOCK \#2 CARD GROUPS

CARD
GROUP
NO.

1- 2
4- 23336
6- 4
7- 3
10-1 101010
10- 1 .
18- 1
19- 11
26- 2.0
26- 4 . 1
26- 2.5
26- . 6
26- 2
26-4 4
26-4 4
26- . 0 . 0 2.875
26- . 0 . 05 2.875
26- . 0 . 1 2.873
26- . 0 . 151 2.871
26- . 6 . 0 2.87
26- .6 .05 2.875
26 - 6 . 1 2.873
26-6 . 6 . 2.871

## HITCAN User's Manual - Version I. 0

GROUP
No.


## HITCAN User's Manual - Version I. 0

HITEAN OUTPUT SUMMARY


ENTTIAL LOAS


HITEAN OUTPUT SUMMARY THICK RING USINC 8RICX ELEMENT SURAECTED TO A CENTRIFUEAL LEABTME

OISPLACEMENTS AFTER THE DHTLAL LON AT SELECTED NOOES

| nope mo. | $\begin{gathered} x \\ (\text { in. }) \end{gathered}$ | $\begin{gathered} Y \\ (\text { in. }) \end{gathered}$ | $\begin{gathered} z \\ (\text { in. }) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1 | : $685 \mathrm{E}-04$ | 0.22RE-28 | 0.337E-02 |
| 2 | 2.683E-04 | 0.583E-04 | 0.337E-82 |
| 3 | 2.615E-06 | 0.128E-83 | 0.336E-02 |
| 4 | 2.684E-06 | 0.176E-93 | 0.336E-02 |
| 5 | 9.572E-04 | 0.457E-28 | 0.337E-02 |
| 6 | 9.569E-04 | 0.583E-04 | 0.337E-02 |
| 7 | 0.571E-04 | 0.118E-03 | 0.337E-02 |
| 8 | 0.569E-04 | 0.176E-03 | 0.336E-02 |
| 9 | 9.457E-06 | 0.6EGE-28 | 0.337E-02 |
| 18 | 0.455E-04 | 0.513E-04 | 0.337E-02 |
| 11 | 0.457E-06 | 0.128E-03 | 0.337E-02 |
| 12 | 0.455E-04 | $0.276 E-03$ | 0.336E-02 |
| 13 | 9.229E-04 | $0.915 \mathrm{E}-28$ | $0.337 E-02$ |
| 14 | 3.227E-94 | $0.583 \mathrm{E}-04$ | 0.337E-02 |
| 15 | 2.22:E-04 | 0.218E-03 | 0.337E-02 |
| 16 | 2.22EE-24 | 0.176E-03 | 0.336E-02 |
| 17 | 3.160E-E1 | 0.919E-28 | 0.337E-02 |
| 18 | -9.498E-07 | 0.58NE-*4 | 0.337E-02 |
| 19 | 2.734E-07 | $0.218 E-03$ | 0.337E-02 |
| 20 | -0.162E-06 | $0.176 E-43$ | $0.336 E-02$ |
| 21 | -0.227E-04 | 0.989E-28 | 0.337E-02 |
| 22 | -0.229E-04 | 0.545E-04 | 0.337E-A2 |
| 23 | -0.227E-04 | 0.118E-03 | 0.337E-02 |
| 29 | -0.230E-04 | 0.176E-03 | 0.336E-02 |
| 25 | -0.455E-04 | 0.6E1E-28 | 0.357E-02 |
| 26 | -0.458E-06 | 0.5M5E-04 | -0.337E-02 |
| 27 | -0.454E-06 | 0.128E-83 | 0.337E-02 |
| 28 | -0.457E-04 | 0.176E-83 | 0.336E-82 |
| 29 | -0.569E-04 | $0.454 E-28$ | 0.357E-82 |
| 30 | -0.573E-04 | 0.585E-94 | 0.35TE-02 |

HITCAN User's Manual - Version I. 0

| 31 | -0.568E-04 | 0.118E-83 | 0.337E-02 |
| :---: | :---: | :---: | :---: |
| ミ2 | -0.570E-04 | 0.176E-03 | 0.336E-02 |
| 33 | -0.684E-84 | $0.22 T E-28$ | 0.337E-82 |
| 34 | -0.68TE-04 | 0.585E-64 | 0.337E-02 |
| 35 | -0.682E-04 | 0.118E-63 | $0.336 E-82$ |
| 36 | -0.683E-A6 | 0.176E-03 | $0.336 E-82$ |
| 37 | 0.668E-04 | 0.44BE-28 | $0.335 E-82$ |
| 38 | 0.662E-04 | 0.583E-06 | 0.335E-62 |
| 59 | $0.660 E-84$ | 0.117E-83 | 0.334E-02 |
| 40 | $0.6625-84$ | 0.175E-83 | 0.334E-02 |
| 41 | 0.550E-04 | 0.895E-28 | 0.335E-02 |
| 42 | $0.552 E-84$ | 0.583E-04 | 0.335E-42 |
| 43 | 0.550E-86 | $0.117 E-03$ | 0.334E-42 |
| 44 | 0.552E-84 | $0.175 E-03$ | $0.334 E-02$ |
| 45 | $0.440 \mathrm{E}-84$ | $0.134 E-27$ | 0.335E-02 |
| 46 | 0.442E-04 | $0.583 E-* 4$ | 0.335E-02 |
| 47 | 0.440 - 44 | $0.127 E-83$ | $0.334 E-42$ |
| + | $0.492 E-04$ | 0.175E-03 | 0.334E-02 |
| 49 | 0.22:E-04 | 0.179E-27 | $0.335 \mathrm{E}-02$ |
| 58 | 0.2238-04 | 0.533E-04 | 0.335E-02 |
| 51 | 0.223E-04 | 0.117E-03 | 0.335E-82 |
| 52 | 0.2205-04 | 0.175E-03 | 0.334E-02 |
| 53 | -0.196E-31 | 0.179E-27 | 0.335E-02 |
| 54 | $0.648 E-97$ | 0.584E-04 | 0.335E-02 |
| 55 | -0.219E-06 | 0.117E-03 | 0.335E-02 |
| 56 | 0.806E-07 | 0.175E-03 | 0.334E-02 |
| 57 | -0.2205-24 | 0.179E-27 | 0.335E-02 |
| 58 | -0.239E-04 | 0.583E-04 | 0.335E-02 |
| 59 | -9.22c5-24 | 0.127E-03 | 0.335E-02 |
| 20 | -3. $21.95-04$ | 0.175E-03 | 0.334E-02 |
| 31 | -3.443E-04 | 0.134E-27 | 0.335E-02 |
| 02 | - $0.439 \mathrm{E}-04$ | 0.583E-04 | 0.335E-02 |
| 03 | -0.443E-04 | 0.117E-03 | 0.334E-02 |
| 54 | -0.439E-84 | 0.175E-03 | 0.334E-02 |
| 65 | --.553E-04 | 0.896E-28 | 0.335E-02 |
| 66 | - $0.549 \mathrm{E}-84$ | 0.582E-04 | 0.335E-02 |
| 07 | -0.553E-04 | 0.217E-03 | 0.334E-02 |
| 08 | -0.558E-94 | 0.175E-03 | 0.334E-02 |
| 69 | -0.663E-84 | $0.44 \mathrm{EE-28}$ | 0.335E-02 |
| 70 | - $0.6595-84$ | 0.582E-04 | 0.355E-02 |
| 71 | -0.643E-04 | 0.116E-03 | 0.334E-02 |
| i2 | - $0.660 E-04$ | 0.175E-93 | 0.334E-02 |
| 73 | 0.640E-64 | 0.431E-28 | 0.333E-02 |
| i4 | 0.638E-04 | 0.583E-04 | 0.333E-02 |
| 75 | $0.641 E-04$ | 0.117E-83 | 8.332E-82 |

Chapter 6

HITCAN User's Manual - Version I. 0

| 76 | 9.638E-04 | $0.174 E-63$ | 0.3325-92 |
| :---: | :---: | :---: | :---: |
| 77 | 1.534E-04 | $0.863 E-28$ | $0.3335-82$ |
| 78 | 0.532E-04 | 0.533E-84 | $0.333 E-82$ |
| 79 | 2.534E-84 | 0.217E-83 | $0.3325-82$ |
| 80 | 2.532E-04 | $0.174 E-83$ | 0.332E-92 |
| 81 | 3.427E-04 | $0.129 E-27$ | 0.335E-02 |
| 82 | 0.425E-04 | $0.583 E-94$ | 0.333E-82 |
| 83 | 2.427E-04 | 0.217E-83 | 0.332E-02 |
| 84 | 0.025E-84 | $0.174 E-83$ | 0.352E-82 |
| 85 | 0.214E-04 | $0.173 E-27$ | 0.353E-12 |
| 86 | 0.212E-04 | 0.54 E-84 | 0.333E-12 |
| 87 | -.214E-04 | 0.237E-73 | 0.353E-82 |
| 88 | 0.232E-04 | 0.174E-83 | 0.332E-02 |
| 89 | 0.232E-31 | $0.173 E-27$ | 0.333E-02 |
| 90 | -0.752E-07 | 0.584E-64 | $0.333 E-02$ |
| 91 | 2.952E-07 | 0.117E-03 | $0.353 E-02$ |
| 92 | -0.125E-06 | 0.174E-83 | 0.332E-82 |
| 93 | -0.212E-84 | $0.173 E-27$ | 0.353E-02 |
| 94 | -9.214E-04 | 0.584E-04 | 0.333E-02 |
| 95 | -0.2325-04 | 0.127E-03 | $0.335 E-02$ |
| 96 | -6.225E-04 | 0.174E-83 | $0.332 E-02$ |
| 97 | -0.425E-04 | 0.129E-27 | 0.333E-02 |
| 98 | -0.428E-04 | 0.583E-04 | 0.333E-02 |
| 99 | --.425E-04 | 0.117E-03 | -.332E-02 |
| 108 | --.428E-04 | 0.174E-83 | 0.332E-02 |
| 101 | - $0.531 E-04$ | 0.263E-28 | 0.333E-02 |
| 102 | -0.534E-04 | 0.583E-04 | 0.335E-02 |
| 103 | --.531E-04 | 0.217E-03 | 0.332E-02 |
| 104 | - $0.535 E-04$ | 0.174E-03 | 0.332E-02 |
| 105 | -9.637E-04 | $0.431 E-23$ | 0.333E-02 |
| 106 | -9.641E-04 | $0.5838-04$ | 0.333E-02 |
| 107 | -0.638E-04 | 0.217E-03 | 0.332E-82 |
| 108 | - - .6ALE-04 | $0.174 E-83$ | 0.332E-02 |
| 109 | 0.615E-04 | $0.416 E-28$ | 0.331E-02 |
| 110 | 0.628E-04 | 0.582E-04 | 0.331E-02 |
| 111 | 0.616E-04 | $0.215 E-83$ | 0.330E-02 |
| 112 | 0.619E-04 | $0.173 \mathrm{E}-83$ | 0.330E-02 |
| 113 | 0.513E-04 | 0.831E-28 | 0.351E-02 |
| 114 | 0.515E-04 | 0.582E-84 | 0.331E-02 |
| 115 | 0.513E-04 | 0.216E-*3 | 0.33EE-02 |

HITCAN User's Manual - Version I. 0

| :16 | $0.516 E-84$ | 0.173E-03 | 0.330E-72 |
| :---: | :---: | :---: | :---: |
| $: 77$ | 0.410E-04 | 0.125E-27 | 0.331E-02 |
| $: 38$ | 0.412E-04 | 0.583E-04 | 0.351E-02 |
| :19 | 0.410E-04 | 0.116E-03 | 0.33IE-02 |
| :23 | 0.412E-84 | 0.173E-43 | 0.330E-82 |
| :31 | 0.205E-*4 | $0.166 E-27$ | 0.531E-82 |
| :22 | 0.206E-*4 | 0.583E-04 | 0.35IE-42 |
| :23 | 0.204E-84 | $0.216 E-83$ | 0.33IE-02 |
| :29 | 0.207E-94 | 0.173E-63 | 0.33aE-02 |
| :25 | -0.309E-31 | $0.166 E-27$ | 0.337E-02 |
| :25 | $0.648 E-87$ | $0.583 E-84$ | 0.331E-02 |
| :27 | -0.115E-06 | 0.116E-83 | 0.35]E-02 |
| :38 | 0.118E-06 | 0.173E-03 | 0.330E-02 |
| : 29 | -0.207E-06 | 0.166E-27 | 0.3315-02 |
| : 28 | -0.204E-04 | 3.583E-04 | 0.351E-02 |
| :33 | - $-.2078-04$ | 0.216E-03 | 0.33IE-02 |
| : 32 | -0.204E-A4 | 0.173E-03 | 0.330E-02 |
| : 5 | -0.413E-04 | $0.125 E-27$ | 0.331E-02 |
| : 94 | -0.409E-04 | 0.583E-04 | $0.352 E-02$ |
| : 5 | -0.413E-04 | 0.116E-03 | 0.331E-02 |
| : 36 | - $0.910 \mathrm{E}-04$ | 0.273E-03 | 0.33EE-02 |
| :37 | -0.516E-06 | 0.831E-28 | 0.35IE-02 |
| : 28 | -0.512E-04 | 0.582E-04 | $0.352 E-02$ |
| :39 | -0.516E-04 | 0.116E-03 | 0.330E-02 |
| :70 | - $0.513 \mathrm{E}-04$ | 0.173E-03 | 0.330E-02 |
| : 91 | -0.618E-04 | 0.416E-28 | 0.331E-02 |
| : 42 | -0.615E-04 | 0.582E-04 | 0.331E-02 |
| $\because: 3$ | -0.619E-04 | 0.115E-03 | 0.330E-02 |
| : 74 | -0.616E-04 | 0.173E-03 | 0.330E-02 |
| $:: 5$ | 0.594E-04 | 3.400E-28 | 0.329E-02 |
| $\therefore: 6$ | 3.592E-04 | 3.570E-04 | 0.329E-02 |
| $\therefore 7$ | $0.594 E-46$ | 3.114E-03 | 0.328E-02 |
| : 8 | 0.591E-84 | 2.172E-03 | 0.328E-02 |
| : 9 | 0.495E-04 | $0.799 E-28$ | 0.329E-02 |
| 25 | 0.493E-04 | 0.570E-04 | $0.329 E-02$ |
| : $=1$ | 0.495E-04 | 0.114E-03 | 0.329E-02 |
| -2 | 0.495E-8゙ | 0.172E-03 | 0.328E-02 |
| $\cdots 3$ | 0.396E-04 | 0.129E-27 | 0.329E-02 |
| - | 0.394E-04 | 0.570E-04 | 0.329E-02 |
| 155 | $0.396 E-\theta 6$ | 0.214E-83 | 0.329E-02 |
| 15 | 0.394E-24 | 0.272E-03 | 0.328E-02 |
| - 5 | 0.198E-84 | 0.160E-27 | 0.329E-02 |
| 3 | 0.197E-64 | 0.570E-04 | $0.329 E-42$ |
| -3 | 0.199E-04 | 0.114E-03 | 0.329E-02 |
| - ${ }^{1}$ | 0.196E-94 | 0.172E-03 | 0.328E-02 |

HITCAN User's Manual - Version I. 0

| 162 | 0.229E-31 | $0.1606-27$ | 0.329t-02 |
| :---: | :---: | :---: | :---: |
| 262 | -0.754E-07 | $0.570 E-24$ | 0.329E-02 |
| 163 | 0.188E-86 | 0.134E-83 | 0.329E-02 |
| 264 | -0.133E-86 | 0.172E-83 | 0.3285-02 |
| : 65 | -0.197E-84 | 0.160E-27 | 0.329E-02 |
| 166 | -0.19\%E-86 | 0.57 EE-04 | 0.329E-02 |
| 167 | -0.296E-04 | 0.119E-93 | 0.329E-82 |
| 168 | -0.1995-04 | 0.172E-93 | 0.328E-02 |
| 269 | -0.394E-04 | $0.128 E-27$ | 0.329E-82 |
| 170 | -0.397E-04 | 0.578E-04 | 1.329E-82 |
| 27 | -6.394E-04 | 0.214E-83 | 0.329E-82 |
| 172 | -0.397E-04 | 0.172E-83 | 0.328E-02 |
| 173 | -0.492E-84 | 0.799E-28 | 0.329E-82 |
| 174 | -0.496E-86 | 0.570E-04 | 0.329E-92 |
| 175 | -0.492E-84 | $0.1145-83$ | 0.329E-02 |
| $: 76$ | -0.496E-04 | 0.172E-83 | 0.32sE-02 |
| 177 | -0.591E-94 | $0.460 E-28$ | 0.329E-02 |
| 278 | -0.595E-04 | $0.570 E-44$ | 0.329E-42 |
| 179 | -6.591E-04 | 0.214E-83 | 0.323E-82 |
| 288 | -0.594E-04 | 0.272E-33 | 0.328E-02 |
| 181 | 0.588E-04 | 0.336E-28 | 0.327E-02 |
| 182 | 0.578E-04 | -.5C3E-*4 | -.327E-02 |
| 183 | 0.568E-84 | 0.234E-83 | 0.327E-02 |
| 184 | 0.570E-04 | 0.171E-83 | 0.326E-02 |
| 185 | 0.473E-04 | 0.771E-28 | 0.327E-02 |
| 186 | 0.475E-04 | $0.569 E-84$ | 0.327E-02 |
| 187 | 0.473E-04 | 0.124E-83 | 0.327E-02 |
| 188 | 0.676E-04 | 0.171E-23 | 0.326E-02 |
| :89 | 0.379E-04 | 0.116E-27 | 0.327E-02 |
| :90 | 0.380E-04 | $0.569 \mathrm{E}-84$ | 0.327E-02 |
| :91 | $0.378 E-04$ | $0.114 E-83$ | 0.327E-02 |
| :92 | 0.381E-84 | 0.177E-83 | 0.326E-02 |
| :93 | 0.189E-04 | 0.LS4E-27 | 0.328E-02 |
| 194 | 0.191E-04 | 0.569E-* | 0.327E-02 |
| 195 | $0.189 E-04$ | 0.114E-03 | 0.327E-02 |
| 196 | 0.191E-94 | 0.171E-83 | 0.326E-02 |
| 197 | -0.284E-3I | 0.159E-27 | 0.328E-02 |
| 198 | 0.681E-87 | 0.569E-04 | 0.327E-02 |
| 199 | -0.125E-06 | 0.214E-03 | 0.327E-02 |
| 288 | 0.128E-86 | 0.271E-83 | 0.326E-02 |
| 208 | -0.191E-04 | 0.254E-27 | 0.328E-02 |
| 282 | -0.189E-84 | $0.569 E-44$ | 0.327E-02 |
| 233 | -0.191E-04 | 0.114E-83 | 0.327E-02 |
| 289 | -0.188E-04 | 0.172E-83 | 0.326E-02 |
| 285 | -0.381E-04 | $0.116 \mathrm{E}-27$ | 0.32TE-02 |

HITCAN User's Manual - Version I. 0

| 296 | - .3 376E-64 | 0.569E-04 | 0.327E-82 |
| :---: | :---: | :---: | :---: |
| 207 | - $0.38 \pm E-84$ | $0.214 E-03$ | 0.327E-42 |
| 208 | -0.378E-04 | 0.17EE-93 | 0.32CE-02 |
| 209 | -0.476E-04 | 0.772E-28 | 0.327E-02 |
| 218 | -9.473E-04 | $0.568 E-64$ | 0.32rE-02 |
| 211 | - $0.476 E-04$ | $0.214 E-03$ | 0.32JE-82 |
| 212 | -0.472E-84 | 0.273E-03 | 0.326E-92 |
| 213 | -0.572E-04 | 0.34CE-28 | 0.32JE-02 |
| 214 | -0.567E-04 | 0.54 EE - 4 | - .327E-82 |
| 215 | -0.571E-04 | 0.114E-03 | 0.327E-82 |
| 216 | -6.567eatm | 0.277E-03 | 0.326E-02 |
| 217 | 0.569E-04 | $0.190 \mathrm{E}-28$ | 0.325E-02 |
| 218 | 0.545E-04 | 0.573E-04 | -.325E-62 |
| 219 | 0.54GE-04 | $0.213 E-83$ | 0.325E-02 |
| 220 | 0.543E-04 | 0.278E-83 | 0.324E-02 |
| 221 | 0.457E-04 | $0.381 E-28$ | $0.325 E-82$ |
| 222 | 0.454E-04 | 0.573E-06 | $0.325 E-02$ |
| 223 | 1.45EE-04 | 0.213E-03 | 0.325E-62 |
| 224 | 0.452E-04 | 0.178E-03 | $0.324 E-72$ |
| 225 | 0.366E-04 | $0.571 \mathrm{E}-28$ | $0.326 E-82$ |
| 226 | $0.363 E-04$ | 0.573E-04 | $0.325 E-02$ |
| 227 | 0.365E-06 | $0.213 E-03$ | 0.325E-02 |
| 223 | 0.362E-04 | 0.178E-03 | 0.324E-42 |
| 229 | 0.183E-04 | 0.762E-28 | -.326E-02 |
| 238 | 0.181E-04 | 0.574E-04 | -.326E-82 |
| 231 | 0.185E-04 | 1.113E-03 | -.325E-82 |
| 232 | 0.180E-04 | 0.178E-03 | 0.324E-02 |
| 233 | 0.161E-31 | 0.762E-28 | 0.326E-02 |
| 234 | -0.649E-07 | 0.574E-04 | 0.326E-02 |
| 235 | 2.12IE-86 | 0.123E-03 | 0.325E-02 |
| 236 | -9.174E-06 | 0.170E-03 | 0.324E-02 |
| 237 | -9.18LE-04 | $0.762 E-28$ | $0.326 E-02$ |
| 238 | -9.183E-04 | $0.574 E-04$ | 0.326E-82 |
| 239 | -1.181E-04 | $0.1135-03$ | 0.325E-92 |
| 240 | - $0.184 E-04$ | 0.170E-83 | 0.324E-82 |
| 242 | -0.363E-04 | $0.571 \mathrm{E}-28$ | 0.326E-02 |
| 292 | -0.366E-04 | $0.573 E-04$ | 0.325E-82 |
| 293 | - $0.362 E-04$ | $0.1135-03$ | -.325E-12 |
| 294 | -0.366E-04 | $0.1705-93$ | 0.329E-12 |
| 295 | -0.454E-04 | 0.381E-28 | 0.325E-82 |
| 246 | -0.457E-04 | 0.573E-84 | 0.325E-82 |
| 247 | -0.453E-04 | $0.113 E-03$ | 0.325E-42 |
| 298 | -0.457E-04 | 0.270E-03 | $0.324 E-42$ |
| 249 | -0.546E-84 | $0.190 E-28$ | 0.325E-82 |
| 250 | -0.548E-04 | 0.573E-04 | $0.325 E-02$ |
| 251 | -0.543E-04 | 0.11 EE-03 | $0.325 E-82$ |
| 252 | -0.547E-04 | 0.170E-03 | 0.324E-42 |

```
HITCAN User's Manual - Version I.0
```

EXAMPLE PROBLEM 非3

Example 非3 demonstrates the basic characteristics of a dataset required to run the HPLATE model option in the HITCAN code. This example is of a modal analysis of a hollow built-up structure. The structure has 0.5 in . length, 0.2 in. width , 0.075 in. total thickness, 0.02 in. thickness at the top plate, 0.01 in. thickness of the bottom plate, and 3 spars in the $x-z$ plane equally spaced in the y -direction with 0.02 in . thickness. The structure is made of Sic/Ti-15-3-3-3 composite material (Silicon Carbide fiber, Titanium matrix with 15\% Vanadium, 3\% Aluminum, $3 \%$ Chromium, and $3 \% \mathrm{Tin}$, and interphase with average properties of the fiber and the matrix). The composite laminate consists of 4 plies (90/0/0/90) of equal thickness for the top plate, 2 plies ( $90 / 90$ ) of equal thickness for the bottom plate, and 4 plies ( $0 / 0 / 0 / 0$ ) of equal thickness for the spars. Each ply has a fiber volume ratio of 0.5. See Figure 6.6 for a complete description of the geometry, boundary conditions, and the loading. Figure 6.7 illustrates the ply layup. The finite element model is shown in Figures 6.8 and 6.9. A portion of the output is shown after a discussion of the input deck.

## HITCAN User's Manual - Version I. 0



## GEOMETRY



## LOADING AND BOUNDARY CONDITIONS

Figure 6.6: Examples Of Problem Number 3

```
HITCAN User's Manual - Version I.O
```



Figure 6.7: Ply Layup

```
HITCAN User's Manual - Version I. 0
```



Figure 6.8: Finite Element Model Showing Element Numbers

```
HITCAN User's Manual - Version I.O
```



Figure 6.9: Finite Element Showing Node Numbers

# HITCAN User's Manual - Version I. 0 <br> INPUT DECK DESCRIPTION 

PROGRAM OPTION CARDS
The program option cards chosen are:
TITLE
HPLATE
PANEL
PLATE
PROFILE
PLYORDER
MODAL
FORCE
ENDOPTION

## CARD GROUP 1

The number of material systems to be described in Card Group 28 of this input deck is 2. One material system is required for the ply with a fiber orientation angle of $0^{\circ}$, another material system is required for the ply with a fiber orientation angle of $90^{\circ}$.

## CARD GROUP 2

The number of output sections (NOSC) was chosen to be 2 . Both of the output sections are to have spars, so the variable NXSPAR is set to 2 . The number of spars was chosen to be 3 . Since NYSPC is equal to 7 , the number of elements along the
$y$-axis will be 8 .
CARD GROUP 6

The number of plies for one-half of the wall thickness (MAXPLY) is set to 2. This means that the maximum number of plies available to fill the wall thickness is 4.

CARD GROUP 9
The first value on this line is the number of input cross sections on the top surface. The second value is the number of input cross sections on the bottom surface. Thus, the array LSECT has the values (3, 3).

```
HITCAN User's Manual - Version I.0
```

CARD GROUP 10

In the this card group the number of load steps (NTISTP) is set to 1 , the number of mechanical cycles (NMECHC) is set to 1 , and the number of thermal cycles (NTHERC) is also set to 1 . The number of load increments (LINC) between load steps is 1. Since a restart file is not desired, the variable MSTART is set to 20. The variable MITER, the maximum number of iterations allowed for global convergence, is set to 10 . The tolerance on global convergence (TOL) is set to 1.0 .

CARD GROUP 11
Since a modal analysis is desired this card group must be used. NEIGV is set to 1. INCREG is set to 0 card and MHITER is set to 20.

CARD GROUP 19

The number of boundary condition data sets (NBC) is 5 .
CARD GROUP 24

In this card group the number of elements between output sections, the $x$ coordinate of the output sections, and the spar descriptions are given. The first line in this card group contains the ply designation numbers for the spars. This is the array NSPDES. Here this array has the values (1, 1, 1). The next line has the number of elements between output sections 1 and 2 and the $x$ coordinate of output section 1 . The following line describes the 3 spars. Note that since the program option card PANEL was specified, the location of the spars is not needed. HITCAN will automatically place the spars at each end of the panel. In this example each spar has a wall thickness of 0.02 in. The array NXSPC will be equal to $(2,2)$. The $x$-coordinate of each output section is in the array $X$. This array has the values (. $0, .25, .5$ ). The next card is the number of points for each input cross section on the top surface. Each input cross section will have 3 input points. The next card contains this same information, but for the bottom of the panel. Here again 3 input points will be used for each input cross section. The next card contains the coordinates of an input point. The first 9 lines is for the input points of the top of the panel. The first 3 lines are for the first cross section. The next 3 lines are for the second cross section, etc. Each line contains the coordinates and wall thickness of 1 input point. The next 9 lines are the coordinates of the input points of the bottom of the panel.

## HITCAN User's Manual - Version I. 0

CARD GROUP 28

The number of different material systems is 2. Each material system is represented by two records, thus four lines are required. The first record defines the location of the ply on the model by percent of thickness, length, and width. The first two values on this record refer to the initial and final percent thickness of the thickest grid point of the model. The next four values are the initial and final percent width and initial and final percent length. Since both plies are to be used over the entire shell, this record has the values $0.0,100.0,0.0,100.0,0.0$, and 100.0 . The second record specifies fiber type, matrix type, ply thickness, void volume ratio, fiber volume ratio, and orientation angle in degrees relative to the structural $x$-axis. Both plies are identical, except for the ply orientation.

CARD GROUP 29
The ply stack-up order for one-half of the wall thickness is designated by 2 plies starting at the bottom of the top surface. This layup is in the array MPLY. MPLY is equal to (2, 1) .

CARD GROUP 32

The time at each load step is given in this card group.

CARD GROUP 36
This card group contains the information required for concentrated force loading. The first line contains the node number and the direction of the applied force. The second line contains the value of the force at each load step.

CARD GROUP 41

This CARD GROUP contains the boundary conditions. Each record consists of the beginning node number, the ending node number, the node numbering increment, and the degree-of-freedom which is constrained.

CARD GROUP 42

This card group controls the output. Since the output controlled by this card is not desired, the cards in this group are blank.

CARD GROUP 44

Since a buckling analysis is desired the last card must contain the time at which the analysis is to be done.

## HITCAN User＇s Manual－Version I． 0 <br> INPUT DECK FOR PROBLEM 非3

Note that the Card Group Nos．are not part of the Input File．
BLOCK 非1 PROGRAM OPTION CARDS
TITLE＝BUCKLING ANALYSIS OF A PANEL SUBJECTED TO A NODAL FORCES
HPLATE MODEL OPTION
PANEL
PLATE
PROFILE
PLYORDER
MODAL
FORCE
ENDOPTION
BLOCK 非2 CARD GROUPS
CARD
GROUP
NO．


| 1 － | 2 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 － | 2 | 2 | 3 | 7 |  |  |  |  |
| 6 － | 2 |  |  |  |  |  |  |  |
| 9. | 3 | 3 |  |  |  |  |  |  |
| $10-$ | 1 | 1 | 1 | 120 | 10 |  |  |  |
| 10. |  | 1. |  |  |  |  |  |  |
| 11. | 1 |  | 20 |  |  |  |  |  |
| 15. | 10 |  |  |  |  |  |  |  |
| 19. | 5 |  |  |  |  |  |  |  |
| 24. | 1 |  | 1 |  |  |  |  |  |
| 24. | 2 | ． 0 |  |  |  |  |  |  |
| 24 － |  | ． 0 |  | ． 02 | ． 0 | ． 02 | ． 0 | ． 02 |
| 24 － | 2 | ． 25 |  |  |  |  |  |  |
| 24. |  | ． 0 |  | ． 02 | ． 0 | ． 02 | ． 0 | ． 02 |
| 24. |  | ． 5 |  |  |  |  |  |  |
| 24. |  | ． 0 |  | ． 02 | ． 0 | ． 02 | ． 0 | ． 02 |
| 24. | 3 | 3 | 3 |  |  |  |  |  |
| 24. | 3 | 3 | 3 |  |  |  |  |  |
| 24. |  | ． 0 |  | －． 1 | ． 04 | ． 02 |  |  |
| 24－ |  | ． 0 |  | ． 0 | ． 04 | ． 02 |  |  |
| 24. |  | ． 0 |  | ． 1 | ． 04 | ． 02 |  |  |
| 24－ |  | ． 25 |  | －． 1 | ． 04 | ． 02 |  |  |
| 24 － |  | ． 25 |  | ． 0 | ． 04 | ． 02 |  |  |

```
HITCAN User's Manual - Version I.O
```

| CARD <br> GROUP <br> NO . |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 24. | . 25 | . 1 | . 04 | . 02 |  |  |  |
| 24. | . 5 | -. 1 | . 04 | . 02 |  |  |  |
| 24. | . 5 | . 0 | . 04 | . 02 |  |  |  |
| 24. | . 5 | . 1 | . 04 | . 02 |  |  |  |
| 24. | . 0 | -. 1 | . 035 | . 01 |  |  |  |
| 24. | . 0 | . 0 | . 035 | . 01 |  |  |  |
| 24. | . 0 | . 1 | . 035 | . 01 |  |  |  |
| 24. | . 25 | -. 1 | . 035 | . 01 |  |  |  |
| 24. | . 25 | . 0 | . 035 | . 01 |  |  |  |
| $24-$ | . 25 | . 1 | . 035 | . 01 |  |  |  |
| 24. | . 5 | -. 1 | . 035 | . 01 |  |  |  |
| 24. | . 5 | . 0 | . 035 | . 01 |  |  |  |
| 24. | . 5 | . 1 | . 035 | . 01 |  |  |  |
| 28 - | . 0 | 100. | . 0 | 100. | . 0 | 100. |  |
| 28- SICA | TI15 | . 005 | . 0 | . 4 | . 0 |  |  |
| 28. | . 0 | 100. | . 0 | 100. | . 0 | 100. |  |
| 28- SICA | TI15 | . 005 | . 0 | . 4 | 90. |  |  |
| 41- 37 | 541 | 1 |  |  |  |  |  |
| 41- 9 | 8118 | 2 |  |  |  |  |  |
| 41- 10 | 8218 | 2 |  |  |  |  |  |
| 41- 9 | 8118 | 3 |  |  |  |  |  |
| 41- 10 | $82 \quad 18$ | 3 |  |  |  |  |  |
| 42- |  |  |  |  |  |  |  |
| 42 - |  |  |  |  |  |  |  |
| 42- |  |  |  |  |  |  |  |
| 42 - |  |  |  |  |  |  |  |
| 44- | . 0 |  |  |  |  |  |  |
| 44- | . 0 |  |  |  |  |  |  |

HITCAN User's Manual - Version I. 0

EISENVALUE EXTRACTION

EITSMALUE MURBE 2 VALUE $=0.427507 E+21$

IN CrCLES PER TLriE $3.25125 E+84$

EITENUECTOR

| 1 | -0.44acas-84 | -9.581388-03 | $0.19879 E-81$ | 9.44014E-31 | $0.65224-12$ | - $0.145 \mathrm{TrP-9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | -9.64371E-04 | -9.47639E-43 | $0.18623 E-81$ | $0.7442215-81$ | $0.185725-81$ | -0.1609crob |
| 3 | -0.745215-84 | -7.45015E-83 | 0.16127E-91 | 0.92-85E-81 | $0.34837-82$ | -0.17195-42 |
| 4 | - 1.846095004 | - - . $422924-83$ | $0.13728-91$ | 0.923805081 | - $0.426255-12$ | 0.52479 |
| 5 | -9.10174E-83 | -4.3947E-85 | $0.214525-11$ | $0.752-25 \leq 01$ | - . 84235 F -15 | -0.2e7tiri-92 |
| 6 | -9.13577E-83 | -0.29861E-43 | 0.90 crecer | 0.21862 | $0.1853 \times-01$ |  |
| 7 | -0.2357E-03 | -0.20265E-83 | 0.55557E-42 | $0.15 \pm 75$ | - 0.356956 -2 | -0.1720-5-18 |
| 6 | -0.11860E-03 | -0.1825ge-83 | 0.189315022 | 0.12879 | - $0.28375 E-01$ | 0.2809802 |
| 9 | -9.74056E-04 | 0. | - .enece | - 515155-01 | - 0.28685 E - 1 | - 0.15845 |
| 10 | J.422655-84 | 3.8008 | -.8eene | -0.0e925E-01 | -0.37307E-02 | - -23841802 |
| 11 | 0.16270E-03 | $0.175215-03$ | $0.49324 E-5$ | 0.15274 | -0.51293E-8 | - 2845 c -03 |
| 12 | 0.19635E-83 | 2.3463EE- ${ }^{\text {a }}$ | $0.56753 E-02$ | 0.1922 | -0.258uc-e2 | -0.23gancor |
| 13 | 2.18874E-03 | J.51687E-05 | 0.18680508 | 0.23554 | 0.43970E-81 | 0.35215 E 02 |
| 14 | J.11658E-63 | 3.43713E-43 | $0.11474 E-01$ | -0.238858-01 | -0.36a70E-02 |  |
| 15 | j.11486E-03 | 3.72994E-03 | $0.12848 E-02$ | 0.97397E-01 | -0.36080E-01 | 0.24851502 |
| 16 | J.1074IE-93 | 1.77407E-93 | 0.1559¢E-01 | 0.2332 | -0.25701E-02 | -0.242525-12 |
| :7 | J. 94232E-04 | 3.81987E-95 | 0.19838E-01 | J. 35538E-02 | $0.26920 E-01$ | $0.251418-2$ |
| : 8 | J.65793E-06 | 3.86752E-95 | J.19886E-01 | -1.26750E-05 | -0.155ces-02 | -0.2esser-42 |
| !9 | -3.31690E-46 | - - .55153E-03 | $0.288215-01$ | 3.45863E-01 | -0.47682E-02 | $0.759+5$ |
| 51 | -3.32693E-06 | - $9.52135 E-63$ | 0.18182E-41 | 9.75476E-01 | -0.67225E-02 | -0.s512ue-3 |
| 21 | -9.38870E-04 | - $0.49158 E-3$ | $0.16389 E-21$ | $0.95243 E-81$ | -0.36696E-t2 | 0.718 cres |
| 22 | -.3.45164E-04 | -9.46268E-03 | 0.13n53E-01 | 0.95 cax -01 | -0.24994E-3 | -0.7enene-3 |
| 23 | -7.4¢E3EE-04 | -0.43408E-53 | $0.11685 E-81$ | $0.745158-41$ | -0.26794E-02 | 6.2-2n5-42 |
| 24 | -3.44147E-04 | -0.32933E-03 | 0.Exc5TE-02 | 0.12187 | -6.64ATTE-02 | -6.767135-03 |
| 25 | -9.429085-04 | -9.21411E-03 | $0.546218-42$ | 0.13625 | $0.27285 E-03$ | 0.1184580 |
| 26 | -9.34395E-46 | -.1053ce-3 | $0.273846-12$ | 0.12491 | 0.81257E-t2 | -4.62ntry ${ }^{\text {- }}$ |
| 27 | -9.2568E-04 | 2.80ese | 0.08888 | 0.57908E-01 | $0.46249 E-2$ | 0.1115082 |
| 28 | 3.16035E-44 | 2.aceee | 0.0ese | -0.0e937E-01 | $0.29095-02$ |  |
| 29 | 3.291235-44 | 9.16354E-03 | 0.28138E-82 | 0.25770 | 0.25899 - 2. | - . 1154rt-92 |
| 30 | - 33cacere | 3.352465-03 | 0.56905E-42 | 0.19878 | 0.10883E-43 | 0.952585 |

HITCAN User's Manual - Version I. 0

| 32 | 0.39580E-A4 | $0.517805-03$ | 0.9387E-82 | 0.24157 | -0.23955E-A1 | -0.12935 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | $0.556725-04$ | 3.66674E-83 | $0.21789 \mathrm{E}-91$ | -0.25172E-81 | -0.ectasene | . 2 |
| 33 | $0.51856 \mathrm{E}+4$ | 0.71579E-03 | $0.23576 E-01$ | 97E-81 | 550E-01 | -9.625015-1 |
| 34 | 0.4746eE-04 | $0.763325-83$ | 0.257asE-01 | 0.13592 | -0.960522-03 | 0.96985 Ec |
| 35 | 42353E-44 | 3e395E-43 | 0.18376E-81 | 789E-91 | . 2483 EE-01 | -0.42503E-1 |
| 36 | 0.43371E-04 | $0.85167 E-43$ | $0.28038 E-91$ | .482008-03 | -0.21399E-02 | $0.6923050-1$ |
| 37 | 0.00880 | -0.52ascE-03 | 28890E- | 0.46346E-01 | 0.3 c426E-09 | d |
| 38 | 0.88800 | -1.50166E-A3 | 18825E-01 | .757TE-91 | .103sene-a9 | 0.8572x-1 |
| 39 | 1888 | -4.07327E-93 | 0.16378 -02 | $0.96609 E-01$ | . 1 | .25cces-1 |
| 40 | 0.ssces | -0.44262E-83 | 0.24001E-01 | 91897E-91 | 155325-99 | $0.4 \times 35^{-1}$ |
| 41 | 0.80898 | -0.41429E-43 | 0.217525-81 | $0.736838-41$ | .42594E-09 | 21875-1 |
| 42 | 0.80808 | -0.38kure-43 | . $931545-42$ | . 12876 | -.28976E-09 |  |
| 43 | 0.0880 | -0.20586E-43 | 57323E-12 | . 23433 | -.21997E-89 | -0.5xinicl |
| 4 | 3.08080 | -0.10325E-03 | 0.19809E-02 | 0.22466 | -0.30930N-t9 | . 1 |
| 45 | -8008 | 0.86888 | 0.88868 | $0.57606 E-9$ | $0.60376 E-49$ | \%-1 |
| 46 | 3.8888! | 0. 190 | 0.88890 | -0.42344E-01 | -0.9ceste-09 | .2597\%-1 |
| 47 | 3.84808 | $0.17158 \mathrm{E}-63$ | 3.53280E-03 | . 23627 | 0.632 TE-89 | . $20580 \pi$-1 |
| 48 | 9.80800 | 0.30152F-83 | 57445E-92 | 0.19429 | -0.4ecice-09 | .16765-1 |
| 49 | 0.98080 | 51269E-9 | 20330E-41 | . 24078 | 0.62023E-09 | 29274-1 |
| 58 | 0.80898 | .6875E-43 | 0.217TSE-42 | -4.238008-91 | -0.e3257E-99 | - $0.890325-1$ |
| 51 | 0.08568 | .75075E-03 | $0.120235-41$ | .96722E-91 | 0 :53419E-49 | -293ce-1 |
| 52 | 0.88380 | $0.78138 \mathrm{E}-43$ | 0.159585-01 | 0.23051 | .35926E-49 | -.4cencril |
| 53 | 0.80408 | 0.82736E-63 | .19254E-41 | .94535E-81 | $0.4857 \mathrm{E}-69$ | 1 |
| 54 | 10830 | 0.87578E-43 | 28097E-81 | .39960E-03 | -0.49452F-49 | 36514c-2 |
| 55 | 0.31690E-04 | -0.55153E-43 | 28324E-01 | .45063E-01 | 0.476025-42 | -7596E- |
| 56 | $0.32693 E-04$ | -0.52235E-93 | $0.18281 E-91$ | .75976E-81 | .672255-02 | .55124E-4 |
| 57 | 3.38370E-04 | -9.49158E-03 | 6309E-81 | 93293E-01 | .36696E-92 | - $0.782835-6$ |
| 58 | $3.45164 E-04$ | -9.46260E-03 | . $388538-01$ | .93888E-91 | J.14494E-83 | .73E2E-0, |
| 59 | J.46838E-04 | 43400E-83 | 21685E-01 | 74514E-81 | 0.26794E-02 | .122515-8: |
| -0 | 2.46147E-94 | -9.32433E-03 | 9.88657E-02 | . 12187 | $0.684 T \mathrm{E}-02$ | .76713E-0 |
| 61 | 2903E-84 | $\rightarrow .239218-83$ | 6421E-82 | . 13625 | -0.27285E-03 | .18903E-9: |
| 62 | 0.34395E-94 | -9.10530E-03 | 3.27384E-42 | . 14991 | -0. $61257 \mathrm{E}-02$ | .6yExE-9! |
| 63 | ग.266seE-04 | 1080* | 19830 | -.57908E-01 | -0.066299E-92 | - 0.18259 F - |
| 66 | -9.16035E-04 | 2.88888 | 0.80851 | -0.40957E-01 | -0.14883E-02 | . 6992 E -4! |
| 65 | -9.19713E-04 | 3.16354E-43 | 0.202385-92 | 0.13770 | -0.250991-01 | 0.14575-09 |
| 66 | -4.33685E-64 | $0.3324 C E-43$ | $0.56905 E-02$ | 0.19878 | -0.1008aE-83 | .93595E-03 |
| 67 | -4.39580E-64 | 9.50180E-0 | 93871E-82 | 0.14157 | 0.23255E-81 | 0.223905-12 |
| 68 | -9.55672E-94 | $0.66676 E-03$ | 0.23795E-41 | -0.25172E-01 | 0.8673aE-03 | -0.129758-02 |
| 64 | -9.51856E-94 | 9.7579E-63 | $0.233168-$ | 0.99097E-01 | -0.1555aE-01 | 0.62578-03 |
| 78 | -9.4744EE-A4 | 9.763325-03 | 0.25783E-01 | 0.13592 | 0.96052E-83 | -0.9693TE-03 |
| $\pi$ | - 0.4255350 .84 | $0.86895 E-83$ | $0.18376 E-81$ | $0.978895-01$ | .14838E- | [15E-93 |
| 72 | -0.43377E-04 | 0.85167E-03 | 0.28030E-61 | $0.48180 E-43$ | 0.21399E-92 | -0.6913NE-03 |
| 3 | 0.44 E-04 | -7.50138E-43 | 0.19879E-81- | $0.46019 E-01$ | .65229E-92 | 193585-82 |
| 4 | 3.64 E-04 | -9.47635E-03 | 3.18613E-01 | 2.744275-01 | -9.10572E-61 | 3.16526E-93 |
|  | . 24 2E-84 | -7.45013E-83 | $27 E$-0 | 0.92285E-91 | -0.36835E-82 | 18 |

HITCAN User＇s Manual－Version I． 0

| 76 | $0.8500{ }^{\text {cose }}$ | －0．02274－5 | $0.15715 E-41$ | 0.824 cave － | 0．42cr－5－12 | － 0.5892 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | $0.12170 \mathrm{E}^{\text {－}}$－ 3 | －0．394715－43 | 0.11450808 | 0．75045－11 | －－cratis－ 5 | －．2717e－92 |
| 78 | $0.15577 E 35$ | －－．29861E－83 |  | 0.1989 | － 0.2053 c －21 | － 0.7 Pr |
| 79 | $0.2575 \pm 38$ | －0．282658－3 | 0.85978 －02 | 0.2197 |  | 1．272－3－02 |
| 88 | $0.21860 E-03$ | －0．10253E－03 | 0.18932504 | 0．21879 | － 2837502 | －．26015－02 |
| 81 | 0.74054504 | 0.8009 | －．asene | －5715E－1 | $0.2860 x^{3}-1$ | － $2374 \times 12$ |
| 82 | －0．62955 -44 | 0.8800 | －asene | －0．009295－1 | －．57387E－N | －2rinsar |
| 83 | －0．16270E－83 | 0.17524508 | 0．astar－43 | 0.21284 | －． 2195301 | －M4ETH5 |
| 8 | －0．196358－03 | 0.34034508 | 0.509512 | 0.2928 | －．288046－02 | －acevitor |
| 85 | －0．18874E－3 | 2．516875－93 | $0.18600 t-01$ | －IEREA | －0．43970E－91 | －aycurso02 |
| 86 | －0．11458－35 | 0.68725015 | $0.234745-41$ | －．2580．7－01 | 0．36170E－02 | 0－3xatate |
| 67 | －0．114ECE－03 | 9．72990E－15 | 0．128ex ${ }^{\text {cos }}$ | 0.97531751 | $0.350800^{-21}$ | －－xatescort |
| 88 | －0．1E741E－83 | 3．77407t－03 | $0.2595 c-1$ | 0.365 | －．25702E－42 | 0．24205－62 |
| 39 | －9．942325－94 | 2．829ETE－03 | 0.19858 .81 |  | －0．26920E－41 | －．2n16TE－02 |
| 96 | －0．65793E－40 | 9：867525－83 | $0.1989 \times 50$ ¢ | －0．2577ar－03 | 0.158 crec 2 |  |
| 91 | －0．30407E－04 | －9．73E2K－85 | － 0.24765803 | －0．11575－03 | －0．132885－02 | － $0.1382 \mathrm{~S}-04$ |
| 92 | －0．2789 E－4 | －4．729355－45 | －0．2xgrac－03 | －0．49724E－03 | －6．12975x－02 | $0.23+1 \times 03$ |
| 93 | －0．223985－46 | －3．64203E－45 | －0．220725－83 | －－．ashrs－3 | －0．116325－02 | －0．Ancreos |
| 94 | －0．189208 | －0．52325E－ 5 | －0．28514E－03 | － $0.10687 E-2$ | － $0.901215-83$ | －cresersons |
| 95 | －0．16278E－44 | －9．42542E－05 | －0．169925－83 | －0．creprens | － 0.4285008 | c．aterson4 |
| 96 | －0．1285E－04 | －9．40953E－05 | －0．2384E－33 | － 0.1541502 | －0．75934E－93 | 0．24cticos |
| 97 | －0．33728－95 | －9．3188c5－05 | － 0.2525508 | － 0.28 trac －02 | － 0.42605 E － 3 | －mextisp |
| 98 | －0．497685－05 | － $0.172953-5$ | － 0.36875 |  |  | －218．91－15 |
| 99 | －0．24370E－45 | 2.00000 | － 0 － 000 | －．Acmis－3 | $0.986553-44$ | 4 |
| 180 | 0．3271E－05 | 9． 00000 | 0．00800 |  | $0.045996-8$ | 0．artears－x |
| 102 | 0．77937E－45 | J．19971E－85 | －0．23984E－84 | － $0.29505-52$ | 0.26558503 | －．2crecre－3 |
| 102 | $0.13758 E-04$ | 3．332708－05 | －0．87728E－t | －0．2788NE－22 | －4．63755E－03 | － $0.253615-44$ |
| 103 | 0．20838E－04 | $2.389915-45$ | －0．14721E－03 | －0．173635－82 | －0．11883E－82 | －0．400ax－03 |
| 184 | 0．27235E－04 | 2．34647E－AS | －0．16957E－03 | 3．57987t－3 | －9．743008－73 | 0．02495E－04 |
| ：25 | j．32852E－04 | 2．49933E－85 | －0．17778E－43 | －0．132TIE－42 | －0．09394E－45 | －0．321925－03 |
| 186 | 0．36157E－94 | 9．56506E－45 | －0．21534E－43 | － $0.1963 \pi E-82$ | －9．116ase－2 | 0．277705－44 |
| 187 | $0.41585 E * 4$ | 2.645515005 | －0．34585－83 | －4．64nas－93 | － 0.144 cre －2 | －6．574M2－03 |
| 188 | $0.456735-44$ | 2．63377E－95 | －0．24645－83 | 9．3ccers－ 5 | － $0.13496 E-12$ |  |
| 189 | －0．27735E04 | 3.591268006 | －．12crit－f3 | － 0.0 crans－4 | －．－8436E－83 | －0．149125－4 |
| 218 | －0．19495E－44 | 9．15616E－ts | －．1032er－03 | － $0.1942 \cdot 95$ | －0．891155－83 | －．258545－93 |
| 12 | － 0.15892 ck | 9．21852E－45 | － $0.967625-94$ | －t．3arvers | － 0.80288 | － 7 7ty 5006 |
| 112 |  | 2．262203－45 | －－Ackres－40 | － $0.4785-5$ | －．Acmeras | 0．fexicrox |
| 12 | －0．254n9－84 | 9．302025－05 | － $0.748175-94$ | －t．42940e－ 3 | － 0.58900 －${ }^{\text {c }}$ |  |
| 114 | －0．9463C－05 | 9．27424E－05 | －0．8985JE－04 | －t．78creos | － $0.386495-3$ | －．18154－93 |
| 125 | －0．5983－05 | －．21286E－45 | －0．3735YE－4 | －0．9118ヶヒー03 |  | C．esgatan |
| 113 | －0．350－ 0 | $0.129245-4$ | －4．2597E－4 | －6．748405－83 | － $0.245 x+03$ | －．95719－44 |

## HITCAN User's Manual - Version I. 0

## REFERENCES

1. Aiello, R. A., "Composite Blade Structural Analyzer User's Manual", NASA, 1989.
2. Lee, H.J., Gotsis, P.K., Murthy, P. L. N. and Hopkins D. A., "Metal Matrix Composite Analyzer User's Guide", NASA, 1991.
3. Nakazawa, S., "The MHOST Finite Element Program: 3-D Inelastic Analysis Methods for Hot Section Components", Volume II, NASA, 1989.
4. Hopkins, P.A., "Nonlinear Analysis for High-Temperature Multilayered Fiber Composite Structures", NASA TM-83754, 1984.
5. Hopkins, P.A. and Chamis, C.C., "A Unique Set of Micromechanics Equations for High Temperature Metal Matrix Composites", NASA TM87154, 1985.
6. Chamis, C.C. and Hopkins, P.A., "Thermoviscoplastic Nonlinear Constitutive Relationships for Structural Analysis of High Temperature Metal Matrix Composites", NASA TM-87291, 1985.
7. Bathe, Klaus-Jurgen,"Finite Element Procedures in Engineering Analysis", Prentice-Hall Inc., 1982.
8. Zeinkiewicz, O. C., "The Finite Element Method", Third Ed., McGrawHill, 1977.

9. SUPPLEMENTARY NOTES
J.J. Lackney and S.N. Singhal, Sverdrup Technology, Inc., Lewis Research Center Group, 2001 Aerospace Parkway, Brook Park, Ohio 44142 (work funded by NASA Contract NAS3-25266); and P.L.N. Murthy and P. Gotsis, Lewis Research Center, Cleveland, Ohio. Responsible person, P.L.N. Murthy (216) 433-3332

12a. DISTRIBUTION/AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE
Unclassified-Unlimited
Subject Category 39
13. ABSTRACT (Maximum 200 words)

This manual describes "how-to-use" the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HITCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.
14. SUBJECT TERMS

Metal matrix composite structures; Fiber composites; Composite mechanics; Laminate analysis; Micro stresses; Micro-mechanics; High temperatures; Thermal properties; Material nonlinearities; 2D and 3D non-linear analysis; Finite elements; Buckling; Computer programs; Computer hardware
17. SECURITY CLASSIFICATION OF REPORT Unclassified
19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

| 15. NUMBER OF PAGES |
| :--- |
| /o, $: 180$ |$|$| 16. PRICE CODE |
| :---: |
| A09 LIMITATION OF ABSTRACT |


[^0]:    Chapter 3
    March, 1992

