13,562 research outputs found

    Randomised positive control trial of NSAID and antimicrobial treatment for calf fever caused by pneumonia

    Get PDF
    One hundred and fifty-four preweaning calves were followed between May and October 2015. Calves were fitted with continuous monitoring temperature probes (TempVerified FeverTag), programmed so a flashing light emitting diode (LED) light was triggered following six hours of a sustained ear canal temperature of ≥39.7°C. A total of 83 calves (61.9 per cent) developed undifferentiated fever, with a presumptive diagnosis of pneumonia through exclusion of other calf diseases. Once fever was detected, calves were randomly allocated to treatment groups. Calves in group 1 (NSAID) received 2 mg/kg flunixin meglumine (Allevinix, Merial) for three consecutive days and group 2 (antimicrobial) received 6 mg/kg gamithromycin (Zactran, Merial). If fever persisted for 72 hours after the initial treatment, calves were given further treatment (group 1 received antimicrobial and group 2 received NSAID). Calves in group 1 (NSAID) were five times more likely (P=0.002) to require a second treatment (the antimicrobial) after 72 hours to resolve the fever compared with the need to give group 2 (antimicrobial) calves a second treatment (NSAID). This demonstrates the importance of ongoing monitoring and follow-up of calves with respiratory disease. However, of calves with fever in group 1 (NSAID), 25.7 per cent showed resolution following NSAID-only treatment with no detrimental effect on the development of repeated fever or daily live weight gain. This suggests that NSAID alone may be a useful first-line treatment, provided adequate attention is given to ongoing monitoring to identify those cases that require additional antimicrobial treatment

    Quenched Chiral Perturbation Theory for Vector Mesons

    Get PDF
    We develop quenched chiral perturbation theory for vector mesons made of light quarks, in the limit where the vector meson masses are much larger than the pion mass. We use this theory to extract the leading nonanalytic dependence of the vector meson masses on the masses of the light quarks. By comparing with analogous quantities computed in ordinary chiral perturbation theory, we estimate the size of quenching effects, observing that in general they can be quite large. This estimate is relevant to lattice simulations, where the ρ\rho mass is often used to set the lattice spacing.Comment: 18 pages, 8 figures, uses REVTeX and epsf.st

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Slow crossover in YbXCu4 intermediate valence compounds

    Full text link
    We compare the results of measurements of the magnetic susceptibility Chi(T), the linear coefficient of specific heat Gamma(T)=C(T)/T and 4f occupation number nf(T) for the intermediate valence compounds YbXCu4 (X = Ag, Cd, In, Mg, Tl, Zn) to the predictions of the Anderson impurity model, calculated in the non-crossing approximation (NCA). The crossover from the low temperature Fermi liquid state to the high temperature local moment state is substantially slower in the compounds than predicted by the NCA; this corresponds to the ''protracted screening'' recently predicted for the Anderson Lattice. We present results for the dynamic susceptibility, measured through neutron scattering experiments, to show that the deviations between theory and experiment are not due to crystal field effects, and we present x-ray-absorption fine-structure (XAFS) results that show the local crystal structure around the X atoms is well ordered, so that the deviations probably do not arise from Kondo Disorder. The deviations may correlate with the background conduction electron density, as predicted for protracted screening.Comment: Submitted to Physical Review B on June 7, 2000, accepted for publication November 2, 2000. Changes to the original manuscript include: 1) a discussion of the relation of the slow crossover to the conduction electron density; 2) a discussion of the relation of the reported results to earlier photoemission results; and, 3) minor editorial change

    P and T Violation From Certain Dimension Eight Weinberg Operators

    Full text link
    Dimension eight operators of the Weinberg type have been shown to give important contributions to CP violating phenomena, such as the electric dipole moment of the neutron. In this note we show how operators related to these (and expected to occur on equal footing) can give rise to time-reversal violating phenomena such as atomic electric dipole moments. We also estimate the induced parity violating phenomena such as small ``wrong'' parity admixtures in atomic states and find that they are negligible. Uses harvmac.tex and epsf.tex; one figure submitted as a uuencoded, compressed EPS file.Comment: 6 pages, EFI-92-5

    3,4-O-Isopropyl­idene-2-C-methyl-d-galactonolactone

    Get PDF
    X-ray crystallography unequivocally confirmed the stereochemistry of the 2-C-methyl group in the title mol­ecule, C10H16O6, in which the 1,5-lactone ring exists in a boat conformation. The use of d-galactose in the synthesis determined the absolute stereochemistry. The crystal exists as O—H⋯O hydrogen-bonded layers in the ab plane, with each mol­ecule acting as a donor and acceptor for two hydrogen bonds

    Risk and protective factors for meningococcal disease in adolescents: matched cohort study

    Get PDF
    Objective: To examine biological and social risk factors for meningococcal disease in adolescents. Design: Prospective, population based, matched cohort study with controls matched for age and sex in 1:1 matching. Controls were sought from the general practitioner. Setting: Six contiguous regions of England, which represent some 65% of the country’s population. Participants: 15-19 year olds with meningococcal disease recruited at hospital admission in six regions (representing 65% of the population of England) from January 1999 to June 2000, and their matched controls. Methods: Blood samples and pernasal and throat swabs were taken from case patients at admission to hospital and from cases and matched controls at interview. Data on potential risk factors were gathered by confidential interview. Data were analysed by using univariate and multivariate conditional logistic regression. Results: 144 case control pairs were recruited (74 male (51%); median age 17.6). 114 cases (79%) were confirmed microbiologically. Significant independent risk factors for meningococcal disease were history of preceding illness (matched odds ratio 2.9, 95% confidence interval 1.4 to 5.9), intimate kissing with multiple partners (3.7, 1.7 to 8.1), being a university student (3.4, 1.2 to 10) and preterm birth (3.7, 1.0 to 13.5). Religious observance (0.09, 0.02 to 0.6) and meningococcal vaccination (0.12, 0.04 to 0.4) were associated with protection. Conclusions: Activities and events increasing risk for meningococcal disease in adolescence are different from in childhood. Students are at higher risk. Altering personal behaviours could moderate the risk. However, the development of further effective meningococcal vaccines remains a key public health priority

    INTERACTION OF FLUORIDE COMPLEXES DERIVED FROM GLASS-IONOMER CEMENTS WITH HYDROXYAPATITE

    Get PDF
    A study has been undertaken of the interaction of complexed fluoride extracted from glass-ionomer dental cements with synthetic hydroxyapatite powder. Extracts were prepared from two commercial glass-ionomers (Fuji IX and ChemFlex) under both neutral and acidic conditions. They were analysed by ICP-OES and by fluoride-ion selective electrode with and without added TISAB to decomplex the fluoride. The pH of the acid extracts was 4, conditions under which fluoride complexes with protons as HF or HF2-, it also complexes with aluminium, which was found to be present in higher amounts in the acid extracts. Fluoride was found to be almost completely complexed in acid extracts, but not in neutral extracts, which contained free fluoride ions. Exposure of these extracts to synthetic hydroxyapatite powder showed that fluoride was taken up rapidly (within 5 minutes), whether or not it was complexed. SEM (EDAX) study of recovered hydroxyapatite showed only minute traces of aluminium taken up under all conditions. This showed that aluminium interacts hardly at all with hydroxyapatite, and hence is probably not involved in the remineralisation process

    Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene

    Full text link
    We show that the optical transparency of suspended graphene is defined by the fine structure constant, alpha, the parameter that describes coupling between light and relativistic electrons and is traditionally associated with quantum electrodynamics rather than condensed matter physics. Despite being only one atom thick, graphene is found to absorb a significant (pi times alpha=2.3%) fraction of incident white light, which is a consequence of graphene's unique electronic structure. This value translates into universal dynamic conductivity G =e^2/4h_bar within a few percent accuracy
    corecore