547 research outputs found

    LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons

    Get PDF
    The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. We show here that the serine/threonine kinase LKB1, previously implicated in the establishment of epithelial polarity and control of cell growth, is required for axon specification during neuronal polarization in the mammalian cerebral cortex. LKB1 polarizing activity requires its association with the pseudokinase Stradalpha and phosphorylation by kinases such as PKA and p90RSK, which transduce neurite outgrowth-promoting cues. Once activated, LKB1 phosphorylates and thereby activates SAD-A and SAD-B kinases, which are also required for neuronal polarization in the cerebral cortex. SAD kinases, in turn, phosphorylate effectors such as microtubule-associated proteins that implement polarization. Thus, we provide evidence in vivo and in vitro for a multikinase pathway that links extracellular signals to the intracellular machinery required for axon specification

    Developmental bias in cleavage-stage mouse blastomeres

    Get PDF
    BACKGROUND: The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, because preimplantation genetic diagnosis requires removal of blastomeres from the early human embryo. To determine whether blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, noninvasive combinatorial fluorescent labeling method for embryonic lineage tracing. RESULTS: When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into postimplantation stages and therefore has relevance for subsequent development. CONCLUSIONS: The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues

    Reorganizing the Intrinsic Functional Architecture of the Human Primary Motor Cortex during Rest with Non-Invasive Cortical Stimulation

    Get PDF
    The primary motor cortex (M1) is the main effector structure implicated in the generation of voluntary movements and is directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS) applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1 results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to Brodmann area 4 (BA4) were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional networks (connectivity degree, clustering coefficient and characteristic path-length) were computed, transformed to volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1, and to image such alterations

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    Haptic interfaces for wheelchair navigation in the built environment

    Get PDF
    A number of countries have recently introduced legislation aimed at ending discrimination against disabled people; in the United Kingdom the Disability Discrimination Act (1995) provides the disabled community with new employment and access rights. The intention of the act is to help those who rely on wheelchairs for mobility and who Frequently find that not all buildings provide conditions suited to easy access, Central to these new rights will be an obligation for employers and organizations to provide premises that do not disadvantage the disabled, This work reports on the development of instrumentation that allows wheelchair navigation within virtual buildings and can assist architects in identifying the needs of wheelchair users st an early design stage. Central to this project has been the need to provide a platform that can accommodate a range of wheelchair types and will map intended wheelchair motion into a virtual space. This interface must have the capacity to provide feedback to the user reflecting constraints present in the physical world, including changes in floor surface characteristics, gradients, and collisions. Integrating visual and nonvisual sensory feedback correlating to the physical effort of wheelchair propulsion has been found to augment the perception of self-motion within the virtual world and so can create an effective instrument for use in the study of wheelchair accessibility within the built environment, This project represents a collaborative effort between architects and bioengineers engaged in research related to platform design, construction, and interfacing, while testing and evaluation has been accomplished with the assistance of user groups

    The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    Get PDF
    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    Cortical disinhibition occurs in chronic neuropathic, but not in chronic nociceptive pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the relationship between chronic neuropathic pain after incomplete peripheral nerve lesion, chronic nociceptive pain due to osteoarthritis, and the excitability of the motor cortex assessed by transcranial magnetic stimulation (TMS). Hence in 26 patients with neuropathic pain resulting from an isolated incomplete lesion of the median or ulnar nerve (neuralgia), 20 patients with painful osteoarthritis of the hand, and 14 healthy control subjects, the excitability of the motor cortex was tested using paired-pulse TMS to assess intracortical inhibition and facilitation. These excitability parameters were compared between groups, and the relationship between excitability parameters and clinical parameters was examined.</p> <p>Results</p> <p>We found a significant reduction of intracortical inhibition in the hemisphere contralateral to the lesioned nerve in the neuralgia patients. Intracortical inhibition in the ipsilateral hemisphere of neuralgia patients and in both hemispheres of osteoarthritis patients did not significantly differ from the control group. Disinhibition was significantly more pronounced in neuralgia patients with moderate/severe pain intensity than in patients with mild pain intensity, whereas the relative compound motor action potential as a parameter of nerve injury severity did not correlate with the amount of disinhibition.</p> <p>Conclusions</p> <p>Our results suggest a close relationship between motor cortex inhibition and chronic neuropathic pain in the neuralgia patients, which is independent from nerve injury severity. The lack of cortical disinhibition in patients with painful osteoarthritis points at differences in the pathophysiological processes of different chronic pain conditions with respect to the involvement of different brain circuitry.</p
    • …
    corecore