78 research outputs found
Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry
The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analysed in various diploid strawberries, especially Fragaria nubicola and F. viridis, both self-incompatible, and F. vesca, self-compatible, and in various progenies derived from them. Unexpectedly, two unlinked RNase loci, S and T, were found, encoding peptides distinct from Prunoideae and Maloideae S-RNases; the presence of a single active allele at either is sufficient to confer self-incompatibility. By contrast, in diploid Maloideae and Prunoideae a single locus encodes S-RNases that share several conserved regions and two active alleles are required for self-incompatibility. Our evidence implicates the S locus in unilateral inter-specific incompatibility and shows that S and T RNases can, remarkably, confer not only allele-specific rejection of cognate pollen but also unspecific rejection of Sn Tn pollen, where n indicates a null allele, consistent with the the presence of the pollen component, SFB, activating the cognitive function of these RNases. Comparison of relevant linkage groups between Fragaria and Prunus suggests that Prunus S-RNases, unique in having two introns, may have resulted from gene conversion in an ancestor of Prunus. In addition, it is shown that there is a non-S locus that is essential for self-incompatibility in diploid Fragaria
Allelic diversity of S‑RNase alleles in diploid potato species
S-ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3’RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full length sequences were obtained for two alleles by 5’RACE. Database searches with these sequences, identified sixteen S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further confirmation that these are functional S-RNases
Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1
Heterochromatin silencing is pivotal for genome stability in eukaryotes. In
Arabidopsis, a plant-specific mechanism called
RNA–directed DNA methylation (RdDM) is involved in heterochromatin
silencing. Histone deacetylase HDA6 has been identified as a component of such
machineries; however, its endogenous targets and the silencing mechanisms have
not been analyzed globally. In this study, we investigated the silencing
mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the
loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent
24-nt siRNAs, however their transcript levels were mostly unaffected in the
rdr2 mutant. Strikingly, we observed significant overlap of
genes silenced by HDA6 to those by the CG DNA methyltransferase MET1.
Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted
in loss of heterochromatic epigenetic marks and aberrant enrichment for
euchromatic marks at HDA6 direct targets, along with ectopic expression of these
loci. Acetylation levels increased significantly in the hda6
mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16.
Interestingly, we observed two different CG methylation statuses in the
hda6 mutant. CG methylation was sustained in the
hda6 mutant at some HDA6 target loci that were surrounded
by flanking DNA–methylated regions. In contrast, complete loss of CG
methylation occurred in the hda6 mutant at the HDA6 target loci
that were isolated from flanking DNA methylation. Regardless of CG methylation
status, CHG and CHH methylation were lost and transcriptional derepression
occurred in the hda6 mutant. Furthermore, we show that HDA6
binds only to its target loci, not the flanking methylated DNA, indicating the
profound target specificity of HDA6. We propose that HDA6 regulates
locus-directed heterochromatin silencing in cooperation with MET1, possibly
recruiting MET1 to specific loci, thus forming the foundation of silent
chromatin structure for subsequent non-CG methylation
Stress-Induced Activation of Heterochromatic Transcription
Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved
Expression of a Self-Incompatibility Glycoprotein (S2-Ribonuclease) from Nicotiana alata in Transgenic Nicotiana tabacum.
In Nicotiana alata, self-incompatibility is controlled by a single locus, designated the S-locus, with multiple alleles. Stylar products of these alleles are ribonucleases that are secreted mainly in the transmitting tract tissues. N. tabacum plants were transformed with constructs containing the S2-cDNA and genomic S2-sequences from N. alata that were linked to the cauliflower mosaic virus 35S promoter. Unlike other genes controlled by this promoter, the genes were expressed most highly in mature floral organs. This pattern of expression was observed at both the protein and RNA levels. The S2-glycoprotein was detected in the stylar transmitting tract tissues of the transgenic plants. The transgene product was secreted, had ribonuclease activity, and was glycosylated with the correct number of glycan chains. However, the maximum level of S2-glycoprotein in styles of the transgenic plants was approximately 100-fold lower than that found in N. alata styles carrying the S2-allele. Perhaps because of this lower protein level, the plants showed no changes in the incompatibility phenotype
- …