96 research outputs found

    DevTMF – Towards code of practice for thermo-mechanical fatigue crack growth

    Get PDF
    The current paper presents work on identification and evaluation of a range of factors influencing accuracy and comparability of data generated by three laboratories carrying out stress-controlled thermo-mechanical fatigue crack growth tests. It addresses crack length measurements, heating methods and temperature measurement techniques. It also provides guidance for pre-cracking and use of different specimen geometries as well as Digital Image Correlation imaging for crack monitoring. The majority of the tests have been carried out on a coarse grain polycrystalline nickel-base superalloy using two phase angles, Out-of-Phase and In-Phase cycles with a triangular waveform and a temperature range of 400–750 °C

    Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    Get PDF
    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite

    Early gene expression changes with rush immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine whether whole genome expression profiling could reveal changes in mRNA expression of peripheral blood mononuclear cells (PBMC) from allergic patients undergoing rush immunotherapy (RIT) that might be manifest within the first few months of treatment.</p> <p>Methods</p> <p>For this study, PBMC from three allergic patients undergoing RIT were assessed at four timepoints: prior to RIT, at 1 week and 7 week post-RIT, during build-up and at 4 months, after establishment of a maintenance dose. PBMC mRNA gene expression changes over time were determined by oligonucleotide microarrays using the Illumina Human-6 BeadChip Platform, which simultaneously interrogates expression profiles of > 47,000 transcripts. Differentially expressed genes were identified using well-established statistical analysis for microarrays. In addition, we analyzed peripheral blood basophil high-affinity IgE receptor (Fc epsilon RI) expression and T-regulatory cell frequency as detected by expression of CD3<sup>+</sup>CD4<sup>+</sup>CD25bright cells at each timepoint using flow cytometry.</p> <p>Results</p> <p>In comparing the initial 2 timepoints with the final 2 timepoints and analyzing for genes with ≥1.5-fold expression change (p less than or equal to 0.05, BH-FDR), we identified 507 transcripts. At a 2-fold change (p less than or equal to 0.05, BH-FDR), we found 44 transcripts. Of these, 28 were up-regulated and 16 were down-regulated genes. From these datasets, we have identified changes in immunologically relevant genes from both the innate and adaptive response with upregulation of expressed genes for molecules including IL-1β, IL-8, CD40L, BTK and BCL6. At the 4 month timepoint, we noted a downward trend in Fc epsilon RI expression in each of the three patients and increased allergen-specific IgG4 levels. No change was seen in the frequency of peripheral T-regulatory cells expressed over the four timepoints.</p> <p>Conclusions</p> <p>We observed significant changes in gene expression early in peripheral blood samples from allergic patients undergoing RIT. Moreover, serum levels for allergen specific IgG4 also increased over the course of treatment. These studies suggest that RIT induces rapid and dynamic alterations in both innate and adaptive immunity which can be observed in the periphery of allergic patients. These alterations could be directly related to the therapeutic shift in the allergen-specific class of immunoglobulin.</p

    Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    Get PDF
    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1−/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1−/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1−/− mice. Male Srd5a1−/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1−/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1−/− mice, is an indirect effect mediated by elevated circulating androgen levels
    corecore