447 research outputs found
Supersymmetric Langevin equation to explore free energy landscapes
The recently discovered supersymmetric generalizations of Langevin dynamics
and Kramers equation can be utilized for the exploration of free energy
landscapes of systems whose large time-scale separation hampers the usefulness
of standard molecular dynamics techniques. The first realistic application is
here presented. The system chosen is a minimalist model for a short alanine
peptide exhibiting a helix-coil transition.Comment: 9 pages, 9 figures, RevTeX 4 v2: conclusive section enlarged,
references adde
Dynamic force spectroscopy of DNA hairpins. II. Irreversibility and dissipation
We investigate irreversibility and dissipation in single molecules that
cooperatively fold/unfold in a two state manner under the action of mechanical
force. We apply path thermodynamics to derive analytical expressions for the
average dissipated work and the average hopping number in two state systems. It
is shown how these quantities only depend on two parameters that characterize
the folding/unfolding kinetics of the molecule: the fragility and the
coexistence hopping rate. The latter has to be rescaled to take into account
the appropriate experimental setup. Finally we carry out pulling experiments
with optical tweezers in a specifically designed DNA hairpin that shows
two-state cooperative folding. We then use these experimental results to
validate our theoretical predictions.Comment: 28 pages, 12 figure
Equilibrium and out of equilibrium thermodynamics in supercooled liquids and glasses
We review the inherent structure thermodynamical formalism and the
formulation of an equation of state for liquids in equilibrium based on the
(volume) derivatives of the statistical properties of the potential energy
surface. We also show that, under the hypothesis that during aging the system
explores states associated to equilibrium configurations, it is possible to
generalize the proposed equation of state to out-of-equilibrium conditions. The
proposed formulation is based on the introduction of one additional parameter
which, in the chosen thermodynamic formalism, can be chosen as the local minima
where the slowly relaxing out-of-equilibrium liquid is trapped.Comment: 7 pages, 4 eps figure
Vibrational origin of the fast relaxation processes in molecular glass-formers
We study the interaction of the relaxation processes with the density
fluctuations by molecular dynamics simulation of a flexible molecule model for
o-terphenyl (oTP) in the liquid and supercooled phases. We find evidence,
besides the structural relaxation, of a secondary vibrational relaxation whose
characteristic time, few ps, is slightly temperature dependent. This i)
confirms the result by Monaco et al. [Phys. Rev, E 62, 7595 (2000)] of the
vibrational nature of the fast relaxation observed in Brillouin Light
Scattering (BLS) experiments in oTP; and ii) poses a caveat on the
interpretation of the BLS spectra of molecular systems in terms of a purely
center of mass dynamics.Comment: RevTeX, 5 pages, 4 eps figure
Kovacs effects in an aging molecular liquid
We study by means of molecular dynamics simulations the aging behavior of a
molecular model of ortho-terphenyl. We find evidence of a a non-monotonic
evolution of the volume during an isothermal-isobaric equilibration process, a
phenomenon known in polymeric systems as Kovacs effect. We characterize this
phenomenology in terms of landscape properties, providing evidence that, far
from equilibrium, the system explores region of the potential energy landscape
distinct from the one explored in thermal equilibrium. We discuss the relevance
of our findings for the present understanding of the thermodynamics of the
glass state.Comment: RevTeX 4, 4 pages, 5 eps figure
A Simple Theory of Condensation
A simple assumption of an emergence in gas of small atomic clusters
consisting of particles each, leads to a phase separation (first order
transition). It reveals itself by an emergence of ``forbidden'' density range
starting at a certain temperature. Defining this latter value as the critical
temperature predicts existence of an interval with anomalous heat capacity
behaviour . The value suggested in literature
yields the heat capacity exponent .Comment: 9 pages, 1 figur
early nutritional programming and progeny performance is reproductive success already set at birth
Compelling evidence indicates that the environment encountered dur-ing fetal life exerts a profound influence on development, physiological function, and risk of disease in adult mammals (Barker, 2007; Langley-Evans and McMullen, 2010). Development is a plastic process, wherein a range of different phenotypes can be expressed from a given genotype. The developing conceptuses respond to conditions in the environment during sensitive periods of cellular proliferation, differentiation, and maturation, resulting in structural and functional changes in cells, tissues, and organ systems. These changes may have short- and/or long-term consequences for health and disease susceptibility. Hence, the term "programming" has been adopted to describe the process whereby a stimulus or an insult at a critical and sensitive period of fetal or perinatal life has permanent effects on the structure, physiology, and metabolism of different organs and sys-tems. Despite many studies investigating the associations between mater-nal environment during fetal development and the onset of cardiovascular disease, obesity, and diabetes in offspring as adults (McMillen and Robin-son, 2005), few studies have investigated the impact of maternal environ-ment on the reproductive potential of offspring. This paper reviews the existing literature on the effects of prenatal and perinatal nutrition on the development and function of the reproductive system in female and male domestic mammals, with particular emphasis on cattle and sheep
Programming scale-free optics in disordered ferroelectrics
Using the history-dependence of a dipolar glass hosted in a
compositionally-disordered lithium-enriched potassium-tantalate-niobate
(KTN:Li) crystal, we demonstrate scale-free optical propagation at tunable
temperatures. The operating equilibration temperature is determined by previous
crystal spiralling in the temperature/cooling-rate phase-space
Oscillating flames in open tubes
When a flame passes along a tube that is open at both ends a self induced fluctuating pressure/flow field is created which the flame has to traverse. Here fuel rich (1.1 < ϕ < 1.4) propane-air flames have been filmed travelling along a 20 mm internal diameter quartz tube. Fluctuations in the flame’s progression were observed to increase as the flame propagated, achieving a maximum oscillation amplitude of ±10 mm at 220 Hz that decayed as the flame progressed further towards the end of the tube. The impact of the periodic pressure gradients on the flame shape could be discerned with tongues of unburned reactants pushed into the products as well as the corresponding rapid acceleration of the flame into the unburned mixture. The impact of the fluctuations on flame chemistry was monitored by capturing the CH∗ and C2 chemiluminescence using a high speed colour camera. The CH∗/C2∗ ratio was observed to decrease as the flame was pulled back towards the burned mixture; and increased when the flame was pushed forwards. This was consistent throughout the flame progress even when small oscillations in the flame position were measured. This could be a significant feature of flames in this environment
Potential Energy Landscape Equation of State
Depth, number, and shape of the basins of the potential energy landscape are
the key ingredients of the inherent structure thermodynamic formalism
introduced by Stillinger and Weber [F. H. Stillinger and T. A. Weber, Phys.
Rev. A 25, 978 (1982)]. Within this formalism, an equation of state based only
on the volume dependence of these landscape properties is derived. Vibrational
and configurational contributions to pressure are sorted out in a transparent
way. Predictions are successfully compared with data from extensive molecular
dynamics simulations of a simple model for the fragile liquid orthoterphenyl.Comment: RevTeX4, 4 pages, 5 figure
- …