5 research outputs found

    Acetato de Ulipristal 5mg (Esmya®) como primera opción en el manejo terapeútico de los miomas uterinos sintomáticos.

    Get PDF
    Introducción: los miomas uterinos son un viejo problema médico, con una elevada incidencia en la población femenina y que suponen un número importante de consultas en ginecología. En la actualidad contamos con nuevas alternativas terapéuticas. Objetivo: proporcionar un enfoque basado en la mejor evidencia disponible de las opciones actuales de tratamiento médico para los miomas uterinos. Métodos: se realizó una búsqueda bibliográfica en las bases de datos, Medline PubMed, Embase, Cochrane, Ovid-Hinari, Scielo, Bireme y Lilacs. Resultados: se revisaron 112 artículos y se seleccionaron 21, los cuales estaban relacionados directamente con el tema. Hay múltiples opciones terapéuticas que han sido usadas para el tratamiento de la miomatosis. Los agonistas de la hormona liberadora de gonadotropina eran los únicos medicamentos aprobados por la Food and Drug Administration para la disminución del volumen de los miomas, con indicación pre-quirúrgica; sin embargo presentan muchos efectos secundarios. Los moduladores selectivos de receptores de progesterona se postulan como una opción útil en el tratamiento de los miomas. Conclusión: la literatura muestra que hay evidencia de que el acetato de ulipristal 5 mg puede ser usado para el manejo exclusivamente médico de pacientes con miomatosis, especialmente para tratar los síntomas asociados y mejorar su calidad de vida. La importancia para el ginecólogo radica, principalmente, en el hecho de que cualquier tratamiento quirúrgico sobre el útero puede tener un impacto negativo directo sobre el pronóstico reproductivo de la paciente, además de no estar exento de posibles complicaciones.pre-print733 K

    Bridges of biomaterials promote nigrostriatal pathway regeneration

    Full text link
    [EN] Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts.Contract grant sponsor: Regional Government Health Department (Conselleria de Sanitat, Generalitat Valenciana) and Carlos III Health Institute of the Ministry of Health and Consumer Affairs (Spain) (Regenerative Medicine Programme) Contract grant sponsor: Spanish ministry of Education and Science; contract grant number: MAT 2006-13554-C02-02 Contract grant sponsor: Red de Terapia Celular TERCEL (RETICS), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion (ISCIII); contract grant number: RD12/0019/0010 (to J.A.) Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT2008-06434 (to M.M.P.) Contract grant sponsor: "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa," Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana, and the Foundation Centro de Investigacion Principe FelipeGómez Pinedo, U.; Sanchez-Rojas, L.; Vidueira, S.; Sancho, FJ.; Martínez-Ramos, C.; Lebourg, M.; Monleón Pradas, M.... (2019). Bridges of biomaterials promote nigrostriatal pathway regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(1):190-196. https://doi.org/10.1002/jbm.b.34110S1901961071Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30-38. doi:10.1016/j.neulet.2013.12.071Bliss, T. M., Andres, R. H., & Steinberg, G. K. (2010). Optimizing the success of cell transplantation therapy for stroke. Neurobiology of Disease, 37(2), 275-283. doi:10.1016/j.nbd.2009.10.003Tam, R. Y., Fuehrmann, T., Mitrousis, N., & Shoichet, M. S. (2013). Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 39(1), 169-188. doi:10.1038/npp.2013.237Skop, N. B., Calderon, F., Cho, C. H., Gandhi, C. D., & Levison, S. W. (2014). Improvements in biomaterial matrices for neural precursor cell transplantation. Molecular and Cellular Therapies, 2(1), 19. doi:10.1186/2052-8426-2-19Yasuhara, T., Kameda, M., Sasaki, T., Tajiri, N., & Date, I. (2017). Cell Therapy for Parkinson’s Disease. Cell Transplantation, 26(9), 1551-1559. doi:10.1177/0963689717735411Orive, G., Anitua, E., Pedraz, J. L., & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10(9), 682-692. doi:10.1038/nrn2685Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of The Royal Society Interface, 5(26), 957-975. doi:10.1098/rsif.2008.0071Pérez‐GarnezM BarciaJA Gómez‐PinedoU Monleón‐PradasM Vallés‐LluchA.Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine. InTech;2014. Chap 7.Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278(1), 1-23. doi:10.1016/j.ijpharm.2004.01.044Raisman, G. (2001). Olfactory ensheathing cells — another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369-375. doi:10.1038/35072576Raisman, G., & Li, Y. (2007). Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 8(4), 312-319. doi:10.1038/nrn2099Fairless, R., & Barnett, S. C. (2005). Olfactory ensheathing cells: their role in central nervous system repair. The International Journal of Biochemistry & Cell Biology, 37(4), 693-699. doi:10.1016/j.biocel.2004.10.010Collins, A., Li, D., Mcmahon, S. B., Raisman, G., & Li, Y. (2017). Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses during Recovery from Dorsal Root Avulsion in the Rat. Cell Transplantation, 26(5), 913-924. doi:10.3727/096368917x695353Navarro, X., Valero, A., Gudi�o, G., For�s, J., Rodr�guez, F. J., Verd�, E., … Nieto-Sampedro, M. (1999). Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Annals of Neurology, 45(2), 207-215. doi:10.1002/1531-8249(199902)45:23.0.co;2-kGómez-Pinedo, U., Félez, M. C., Sancho-Bielsa, F. J., Vidueira, S., Cabanes, C., Soriano, M., … Barcia, J. A. (2008). Improved technique for stereotactic placement of nerve grafts between two locations inside the rat brain. Journal of Neuroscience Methods, 174(2), 194-201. doi:10.1016/j.jneumeth.2008.07.008HowardCV ReedMG.Unbiased Stereology: Three‐Dimensional Measurement in Microscopy. Oxford: Bioimaging Group;1998.Collier, T. J., & Springer, J. E. (1991). Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Experimental Neurology, 114(3), 343-350. doi:10.1016/0014-4886(91)90160-eBourke, J. L., Coleman, H. A., Pham, V., Forsythe, J. S., & Parkington, H. C. (2014). Neuronal Electrophysiological Function and Control of Neurite Outgrowth on Electrospun Polymer Nanofibers Are Cell Type Dependent. Tissue Engineering Part A, 20(5-6), 1089-1095. doi:10.1089/ten.tea.2013.0295Nga, V. D. W., Lim, J., Choy, D. K. S., Nyein, M. A., Lu, J., Chou, N., … Teoh, S.-H. (2015). Effects of Polycaprolactone-Based Scaffolds on the Blood–Brain Barrier and Cerebral Inflammation. Tissue Engineering Part A, 21(3-4), 647-653. doi:10.1089/ten.tea.2013.0779Pérez-Garnés, M., Martínez-Ramos, C., Barcia, J. A., Escobar Ivirico, J. L., Gómez-Pinedo, U., Vallés-Lluch, A., & Monleón Pradas, M. (2012). One-Dimensional Migration of Olfactory Ensheathing Cells on Synthetic Materials: Experimental and Numerical Characterization. Cell Biochemistry and Biophysics, 65(1), 21-36. doi:10.1007/s12013-012-9399-1Diban, N., Ramos-Vivas, J., Remuzgo-Martinez, S., Ortiz, I., & Urtiaga, A. (2015). Poly(ε-caprolactone) Films with Favourable Properties for Neural Cell Growth. Current Topics in Medicinal Chemistry, 14(23), 2743-2749. doi:10.2174/156802661466614121515393

    Síndrome de distrés respiratorio agudo provocado por nocardiosis pulmonar en un paciente con lupus eritematoso sistémico

    No full text
    Nocardia es una bacilo grampositivo que infecta principalmente a pacientes inmunodeprimidos. Su asociación con el lupus eritematoso sistémico se ha descrito pocas veces, y en la bibliografía médica revisada no hemos encontrado ningún caso asociado al síndrome de distrés respiratorio agudo por una nocardiosis pulmonar. A partir de un caso clínico se realiza una descripción de los mecanismos de virulencia de esta bacteria, así como de las características epidemiológicas, microbiológicas, forma de presentación clínica y procedimientos diagnósticos y terapéuticos de esta entidad

    Bridges of biomaterials promote nigrostriatal pathway regeneration

    No full text
    [EN] Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts.Contract grant sponsor: Regional Government Health Department (Conselleria de Sanitat, Generalitat Valenciana) and Carlos III Health Institute of the Ministry of Health and Consumer Affairs (Spain) (Regenerative Medicine Programme) Contract grant sponsor: Spanish ministry of Education and Science; contract grant number: MAT 2006-13554-C02-02 Contract grant sponsor: Red de Terapia Celular TERCEL (RETICS), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion (ISCIII); contract grant number: RD12/0019/0010 (to J.A.) Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT2008-06434 (to M.M.P.) Contract grant sponsor: "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa," Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana, and the Foundation Centro de Investigacion Principe FelipeGómez Pinedo, U.; Sanchez-Rojas, L.; Vidueira, S.; Sancho, FJ.; Martínez-Ramos, C.; Lebourg, M.; Monleón Pradas, M.... (2019). Bridges of biomaterials promote nigrostriatal pathway regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(1):190-196. https://doi.org/10.1002/jbm.b.341101901961071Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30-38. doi:10.1016/j.neulet.2013.12.071Bliss, T. M., Andres, R. H., & Steinberg, G. K. (2010). Optimizing the success of cell transplantation therapy for stroke. Neurobiology of Disease, 37(2), 275-283. doi:10.1016/j.nbd.2009.10.003Tam, R. Y., Fuehrmann, T., Mitrousis, N., & Shoichet, M. S. (2013). Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 39(1), 169-188. doi:10.1038/npp.2013.237Skop, N. B., Calderon, F., Cho, C. H., Gandhi, C. D., & Levison, S. W. (2014). Improvements in biomaterial matrices for neural precursor cell transplantation. Molecular and Cellular Therapies, 2(1), 19. doi:10.1186/2052-8426-2-19Yasuhara, T., Kameda, M., Sasaki, T., Tajiri, N., & Date, I. (2017). Cell Therapy for Parkinson’s Disease. Cell Transplantation, 26(9), 1551-1559. doi:10.1177/0963689717735411Orive, G., Anitua, E., Pedraz, J. L., & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10(9), 682-692. doi:10.1038/nrn2685Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of The Royal Society Interface, 5(26), 957-975. doi:10.1098/rsif.2008.0071Pérez‐GarnezM BarciaJA Gómez‐PinedoU Monleón‐PradasM Vallés‐LluchA.Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine. InTech;2014. Chap 7.Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278(1), 1-23. doi:10.1016/j.ijpharm.2004.01.044Raisman, G. (2001). Olfactory ensheathing cells — another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369-375. doi:10.1038/35072576Raisman, G., & Li, Y. (2007). Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 8(4), 312-319. doi:10.1038/nrn2099Fairless, R., & Barnett, S. C. (2005). Olfactory ensheathing cells: their role in central nervous system repair. The International Journal of Biochemistry & Cell Biology, 37(4), 693-699. doi:10.1016/j.biocel.2004.10.010Collins, A., Li, D., Mcmahon, S. B., Raisman, G., & Li, Y. (2017). Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses during Recovery from Dorsal Root Avulsion in the Rat. Cell Transplantation, 26(5), 913-924. doi:10.3727/096368917x695353Navarro, X., Valero, A., Gudiño, G., Forés, J., Rodríguez, F. J., Verdú, E., … Nieto-Sampedro, M. (1999). Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Annals of Neurology, 45(2), 207-215. doi:10.1002/1531-8249(199902)45:23.0.co;2-kGómez-Pinedo, U., Félez, M. C., Sancho-Bielsa, F. J., Vidueira, S., Cabanes, C., Soriano, M., … Barcia, J. A. (2008). Improved technique for stereotactic placement of nerve grafts between two locations inside the rat brain. Journal of Neuroscience Methods, 174(2), 194-201. doi:10.1016/j.jneumeth.2008.07.008HowardCV ReedMG.Unbiased Stereology: Three‐Dimensional Measurement in Microscopy. Oxford: Bioimaging Group;1998.Collier, T. J., & Springer, J. E. (1991). Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Experimental Neurology, 114(3), 343-350. doi:10.1016/0014-4886(91)90160-eBourke, J. L., Coleman, H. A., Pham, V., Forsythe, J. S., & Parkington, H. C. (2014). Neuronal Electrophysiological Function and Control of Neurite Outgrowth on Electrospun Polymer Nanofibers Are Cell Type Dependent. Tissue Engineering Part A, 20(5-6), 1089-1095. doi:10.1089/ten.tea.2013.0295Nga, V. D. W., Lim, J., Choy, D. K. S., Nyein, M. A., Lu, J., Chou, N., … Teoh, S.-H. (2015). Effects of Polycaprolactone-Based Scaffolds on the Blood–Brain Barrier and Cerebral Inflammation. Tissue Engineering Part A, 21(3-4), 647-653. doi:10.1089/ten.tea.2013.0779Pérez-Garnés, M., Martínez-Ramos, C., Barcia, J. A., Escobar Ivirico, J. L., Gómez-Pinedo, U., Vallés-Lluch, A., & Monleón Pradas, M. (2012). One-Dimensional Migration of Olfactory Ensheathing Cells on Synthetic Materials: Experimental and Numerical Characterization. Cell Biochemistry and Biophysics, 65(1), 21-36. doi:10.1007/s12013-012-9399-1Diban, N., Ramos-Vivas, J., Remuzgo-Martinez, S., Ortiz, I., & Urtiaga, A. (2015). Poly(ε-caprolactone) Films with Favourable Properties for Neural Cell Growth. Current Topics in Medicinal Chemistry, 14(23), 2743-2749. doi:10.2174/156802661466614121515393
    corecore