40 research outputs found

    Clusters containing open-shell molecules. III. Quantum five-dimensional/two-surface bound-state calculations on ArnOH van der Waals clusters (X2Π, n=4 to 12)

    Get PDF
    This paper presents a theoretical study of the bound states of the open-shell OH radical in its ground electronic state(X2Π) interacting with n Ar atoms, for n from 4 to 12. After freezing the geometry of the Arn cage or subunit at the equilibrium structure (preceding paper), we carry out nonadiabatic five-dimensional quantum dynamics calculations on two coupled potential energy surfaces, using an extension of the method previously applied to closed-shell ArnHFclusters [J. Chem. Phys. 103, 1829 (1995)]. The method is based on a discrete variable representation (DVR) for the translational motion of OH relative to Arn, combined with a finite basis representation of the OH hindered rotation and electronic structure, including spin–orbit effects. The pattern of OH hindered rotor levels in clusters is similar to that in Ar–OH itself, though extended over three to four times the energy range for n=4 to 9. Ar12OH has a nearly spherical shell of Ar atoms around the OH, so the anisotropic splitting is very small. For n=10 and 11, the anisotropy may be viewed as arising from holes in an otherwise spherical shell, and the resulting patterns of hindered rotor levels are inverted versions of those for Ar2OH and Ar–OH

    Zero frequency divergence and gauge phase factor in the optical response theory

    Full text link
    The static current-current correlation leads to the definitional zero frequency divergence (ZFD) in the optical susceptibilities. Previous computations have shown nonequivalent results between two gauges (p⋅A{\bf p\cdot A} and E⋅r{\bf E \cdot r}) under the exact same unperturbed wave functions. We reveal that those problems are caused by the improper treatment of the time-dependent gauge phase factor in the optical response theory. The gauge phase factor, which is conventionally ignored by the theory, is important in solving ZFD and obtaining the equivalent results between these two gauges. The Hamiltonians with these two gauges are not necessary equivalent unless the gauge phase factor is properly considered in the wavefunctions. Both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of trans-polyacetylene serve as our illustrative examples to study the linear susceptibility χ(1)\chi^{(1)} through both current-current and dipole-dipole correlations. Previous improper results of the χ(1)\chi^{(1)} calculations and distribution functions with both gauges are discussed. The importance of gauge phase factor to solve the ZFD problem is emphasized based on SSH and TLM models. As a conclusion, the reason why dipole-dipole correlation favors over current-current correlation in the practical computations is explained.Comment: 17 pages, 7 figures, submitted to Phys. Rev.

    Analytical solutions to the third-harmonic generation in trans-polyacetylene: Application of dipole-dipole correlation on the single electron models

    Full text link
    The analytical solutions for the third-harmonic generation (THG) on infinite chains in both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of trans-polyacetylene are obtained through the scheme of dipole-dipole (DDDD) correlation. They are not equivalent to the results obtained through static current-current (J0J0J_0J_0) correlation or under polarization operator P^\hat{P}. The van Hove singularity disappears exactly in the analytical forms, showing that the experimentally observed two-photon absorption peak (TPA) in THG may not be directly explained by the single electron models.Comment: 10 pages, 4 figures, submitted to Phys. Rev.

    The Endofullerene HF@C 60 : Inelastic Neutron Scattering Spectra from Quantum Simulations and Experiment, Validity of the Selection Rule and Symmetry Breaking

    Get PDF
    Accurate quantum simulations of the low-temperature inelastic neutron scattering (INS) spectra of HF@C60 are reported for two incident neutron wavelengths. They are distinguished by the rigorous inclusion of symmetry-breaking effects in the treatment and having the spectra computed with HF as the guest, rather than H2 or HD, as in the past work. The results demonstrate that the precedent-setting INS selection rule, originally derived for H2 and HD in near-spherical nanocavities, applies also to HF@C60, despite the large mass asymmetry of HF and the strongly mixed character of its translation–rotation eigenstates. This lends crucial support to the theoretical prediction made earlier that the INS selection rule is valid for any diatomic molecule in near-spherical nanoconfinement. The selection rule remains valid in the presence of symmetry breaking but is modified slightly in an interesting way. Comparison is made with the recently published experimental INS spectrum of HF@C60. The agreement is very good, apart from one peak for which our calculations suggest a reassignment. This reassignment is consistent with the measured INS spectrum presented in this work, which covers an extended energy range

    Infrared spectroscopy of small-molecule endofullerenes

    Full text link
    Hydrogen is one of the few molecules which has been incarcerated in the molecular cage of C60_{60} and forms endohedral supramolecular complex H2_2@C60_{60}. In this confinement hydrogen acquires new properties. Its translational motion becomes quantized and is correlated with its rotations. We applied infrared spectroscopy to study the dynamics of hydrogen isotopologs H2_2, D2_2 and HD incarcerated in C60_{60}. The translational and rotational modes appear as side bands to the hydrogen vibrational mode in the mid infrared part of the absorption spectrum. Because of the large mass difference of hydrogen and C60_{60} and the high symmetry of C60_{60} the problem is identical to a problem of a vibrating rotor moving in a three-dimensional spherical potential. The translational motion within the C60_{60} cavity breaks the inversion symmetry and induces optical activity of H2_2. We derive potential, rotational, vibrational and dipole moment parameters from the analysis of the infrared absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2_2@C60_{60}. The same parameters were used to predict H2_2 energies inside C70_{70}[Xu et al., J. Chem. Phys., {\bf 130}, 224306 (2009)]. We compare the predicted energies and the low temperature infrared absorption spectra of H2_2@C70_{70}.Comment: Updated author lis

    Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60

    Get PDF
    We report an inelastic neutron scattering (INS) study of H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules
    corecore