36 research outputs found

    Excitation of low-lying states in 144Nd by means of (e,e') scattering

    Get PDF
    Abstract The low-lying states of 144Nd have been investigated up to an excitation energy of 3.1 MeV by means of high-resolution inelastic electron scattering. Transition charge densities have been extracted for natural-parity states. The experimental data have been compared with the predictions of the quasiparticle-phonon model. The calculations show that both collective and single-particle degrees of freedom are important for describing the low-lying states of 144Nd. A comparison of the present data with data for 142Nd and 142Ce emphasizes the role played by the two valence neutrons outside the N = 82 closed shell

    Excess Quantum Noise due to Nonorthogonal Polarization Modes

    Get PDF
    We show that the quantum-limited linewidth of a laser can be enhanced when the polarization eigenmodes of the laser resonator are nonorthogonal. For the theoretical description of this phenomenon we introduce a simple coupled two-mode model. Experimentally, we observed an enhancement of the quantum noise by a factor of 60 in a He-Xe gas laser

    A Calcified Primary liver-cell Carcinoma in a 5 years old child

    No full text

    Numerical Stability for Modelling Of Dynamic Two-Phase Interaction

    No full text
    Dynamic two-phase interaction of soil can be modelled by a displacement-based, two-phase formulation. The finite element method together with a semi-implicit Euler\u2013Cromer time-stepping scheme renders a discrete equation that can be solved by recursion. By experience, it is found that the CFL stability condition for undrained wave propagation is not sufficient for the considered two-phase formulation to be numerically stable at low values of permeability. Because the stability analysis of the two-phase formulation is onerous, an analysis is performed on a simplified two-phase formulation that is derived by assuming an incompressible pore fluid. The deformation of saturated porous media is now captured in a single, second-order partial differential equation, where the energy dissipation associated with the flow of the fluid relative to the soil skeleton is represented by a damping term. The paper focuses on the different options to discretize the damping term and its effect on the stability criterion. Based on the eigenvalue analyses of a single element, it is observed that in addition to the CFL stability condition, the influence of the permeability must be included. This paper introduces a permeability-dependent stability criterion. The findings are illustrated and validated with an example for the dynamic response of a sand deposit

    Demonstration of nulling using delay line phase shifters

    No full text
    We present results of experiments obtained using a new nulling technique that enables deep nulling without the use of achromatic phase shifters. The experimental set-up consists of a three-beam interferometer that should provide a nulling depth of several thousands over a wavelength range of 500 to 650 nm. The intended depth of null was not achieved and further experiments on determining the spectrum of each beam revealed why. We describe a method of obtaining accurate beam spectra in a multi-beam interferometer. The insights on the need of spectral shape control were tested with our nulling theory and proved the sensitivity of this nulling approach with respect to spectral mismatches.Imaging Science and TechnologyApplied Science

    Six shades of vascular smooth muscle cells illuminated by klf4 (krĂĽppel-like factor 4)

    No full text
    Multiple layers of vascular smooth muscle cells (vSMCs) are present in blood vessels forming the media of the vessel wall. vSMCs provide a vessel wall structure, enabling it to contract and relax, thus modulating blood flow. They also play a crucial role in the development of vascular diseases, such as atherosclerosis and aortic aneurysm formation. vSMCs display a remarkable high degree of plasticity. At present, the number of different vSMC phenotypes has only partially been characterized. By mapping vSMC phenotypes in detail and identifying triggers for phenotype switching, the relevance of the different phenotypes in vascular disease may be identified. Up until recently, vSMCs were classified as either contractile or dedifferentiated (ie, synthetic). However, single-cell RNA sequencing studies revealed such dedifferentiated arterial vSMCs to be highly diverse. Currently, no consensus exist about the number of vSMC phenotypes. Therefore, we reviewed the data from relevant single-cell RNA sequencing studies, and classified a total of 6 vSMC phenotypes. The central dedifferentiated vSMC type that we classified is the mesenchymal-like phenotype. Mesenchymal-like vSMCs subsequently seem to differentiate into fibroblast-like, macrophage-like, osteogenic-like, and adipocyte-like vSMCs, which contribute differentially to vascular disease. This phenotype switching between vSMCs requires the transcription factor KLF4 (KrĂĽppel-like factor 4). Here, we performed an integrated analysis of the data about the recently identified vSMC phenotypes, their associated gene expression profiles, and previous vSMC knowledge to better understand the role of vSMC phenotype transitions in vascular pathology

    A combined nulling and imaging pupil-plane beam-combiner for DARWIN

    No full text
    The primary goal of DARWIN is to detect earth-like extrasolar planets and to search for biomarkers. This is achieved by means of nulling interferometry, using three free-flying telescopes and a Beam-Combiner (BC) hub. DARWIN will be able to perform astrophysical imaging with high spectral and spatial resolution. Should one of Darwin's telescope flyers fail, then Darwin's capability of detecting earth-sized exo-planets is dramatically reduced. However, with only two telescopes the imaging mode can continue operating with minimal performance degradation, thus ensuring mission success. This work describes a trade-off study between four conceptual three-beam BC's, that are capable of performing both as a nuller and as an imager. A proposed breadboard design will demonstrate end-to-end Fringe-Tracking (FT) and Optical Path-Length (OPL) control. The BC concept is based on a pupil-plane (Michelson) beam combination scheme. Pupil-plane imaging EC's offer a large overlap in terms of optical layout with the nulling BC concept, making it possible to develop a combined nulling- and imaging BC. This means that a reduced number of optical components can be used compared to a scheme with separate BC's. The BC concept inherently compensates for unequal OPL's, which in ground-based interferometers is compensated for by long stroke Optical Delay Lines (ODL's)

    Six shades of vascular smooth muscle cells illuminated by klf4 (krĂĽppel-like factor 4)

    No full text
    Multiple layers of vascular smooth muscle cells (vSMCs) are present in blood vessels forming the media of the vessel wall. vSMCs provide a vessel wall structure, enabling it to contract and relax, thus modulating blood flow. They also play a crucial role in the development of vascular diseases, such as atherosclerosis and aortic aneurysm formation. vSMCs display a remarkable high degree of plasticity. At present, the number of different vSMC phenotypes has only partially been characterized. By mapping vSMC phenotypes in detail and identifying triggers for phenotype switching, the relevance of the different phenotypes in vascular disease may be identified. Up until recently, vSMCs were classified as either contractile or dedifferentiated (ie, synthetic). However, single-cell RNA sequencing studies revealed such dedifferentiated arterial vSMCs to be highly diverse. Currently, no consensus exist about the number of vSMC phenotypes. Therefore, we reviewed the data from relevant single-cell RNA sequencing studies, and classified a total of 6 vSMC phenotypes. The central dedifferentiated vSMC type that we classified is the mesenchymal-like phenotype. Mesenchymal-like vSMCs subsequently seem to differentiate into fibroblast-like, macrophage-like, osteogenic-like, and adipocyte-like vSMCs, which contribute differentially to vascular disease. This phenotype switching between vSMCs requires the transcription factor KLF4 (KrĂĽppel-like factor 4). Here, we performed an integrated analysis of the data about the recently identified vSMC phenotypes, their associated gene expression profiles, and previous vSMC knowledge to better understand the role of vSMC phenotype transitions in vascular pathology
    corecore