142 research outputs found

    Elucidation of role of graphene in catalytic designs for electroreduction of oxygen

    Full text link
    Graphene is, in principle, a promising material for consideration as component (support, active site) of electrocatalytic materials, particularly with respect to reduction of oxygen, an electrode reaction of importance to low-temperature fuel cell technology. Different concepts of utilization, including nanostructuring, doping, admixing, preconditioning, modification or functionalization of various graphene-based systems for catalytic electroreduction of oxygen are elucidated, as well as important strategies to enhance the systems' overall activity and stability are discussed

    Evaluation of Reduced-Graphene-Oxide Aligned with WO3-Nanorods as Support for Pt Nanoparticles during Oxygen Electroreduction in Acid Medium

    Full text link
    Hybrid supports composed of chemically-reduced graphene-oxide-aligned with tungsten oxide nanowires are considered here as active carriers for dispersed platinum with an ultimate goal of producing improved catalysts for electroreduction of oxygen in acid medium. Here WO3 nanostructures are expected to be attached mainly to the edges of graphene thus making the hybrid structure not only highly porous but also capable of preventing graphene stacking and creating numerous sites for the deposition of Pt nanoparticles. Comparison has been made to the analogous systems utilizing neither reduced graphene oxide nor tungsten oxide component. By over-coating the reduced-graphene-oxide support with WO3 nanorods, the electrocatalytic activity of the system toward the reduction of oxygen in acid medium has been enhanced even at the low Pt loading of 30 microg cm-2. The RRDE data are consistent with decreased formation of hydrogen peroxide in the presence of WO3. Among important issues are such features of the oxide as porosity, large population of hydroxyl groups, high Broensted acidity, as well as fast electron transfers coupled to unimpeded proton displacements. The conclusions are supported with mechanistic and kinetic studies involving double-potential-step chronocoulometry as an alternative diagnostic tool to rotating ring-disk voltammetry.Comment: arXiv admin note: text overlap with arXiv:1805.0315

    Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    Get PDF
    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry majors. A student earns a separate grade in each the lecture (three credits) and the laboratory course (two credits). An overview of the course topics is given, followed by general accommodations and specific approaches that were used. Student assistants were very helpful and provided extra support for the blind student. Student assistants were utilized for the laboratory course, problem sets, and exams. Specific examples and detailed explanations of approaches that were helpful to the legally blind student throughout the entire course are provided. The legally blind student benefited from extensive, verbal description of complexes, figures, and diagrams. In addition, the student benefited from tactile description of figures and models. The student assistants and extra office hours were essential for the blind student to succeed and excel in advanced inorganic chemistry. The approaches discussed in this paper are the product of immediate and continual feedback from the student over the course of the semester. The student would frequently comment after class that he followed the lesson or was confused, and the latter comment elicited experimentation with different approaches

    Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    Get PDF
    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl2(PPh3)3. During the second and third weeks, the students characterize the formed coordination compound and use it as a precatalyst for the oxidation of 1-phenylethanol to acetophenone. The synthesized RuCl2(PPh3)3 is characterized using 1H and 31P NMR spectroscopy, IR spectroscopy, and magnetic susceptibility measurements. The students run catalytic and control reactions and determine the percent yield of the product using 1H NMR. The synthesis and catalytic conditions are modified from previously published research articles. The RuCl2(PPh3)3 complex is air sensitive and is prepared under a nitrogen gas atmosphere and worked up in an inert atmosphere glovebox. The catalytic and control reactions are set up in the inert atmosphere glovebox and carried out at reflux outside of the glovebox under a nitrogen gas atmosphere. In this laboratory, the students learn how to set up and run a reaction under a nitrogen atmosphere, how to work in a glovebox, and how to set up and characterize catalytic and control reactions

    Queryll: Java Database Queries through Bytecode Rewriting

    Get PDF
    When interfacing Java with other systems such as databases, programmers must often program in special interface languages like SQL. Code written in these languages often needs to be embedded in strings where they cannot be error-checked at compile-time, or the Java compiler needs to be altered to directly recognize code written in these languages. We have taken a different approach to adding database query facilities to Java. Bytecode rewriting allows us to add query facilities to Java whose correctness can be checked at compile-time but which don't require any changes to the Java language, Java compilers, Java VMs, or IDEs. Like traditional object-relational mapping tools, we provide Java libraries for accessing individual database entries as objects and navigating among them. To express a query though, a programmer simply writes code that takes a Collection representing the entire contents of a database, iterates over each entry like they would with a normal Collection, and choose the entries of interest. The query is fully valid Java code that, if executed, will read through an entire database and copy entries into Java objects where they will be inspected. Executing queries in this way is obviously inefficient, but we have a special bytecode rewriting tool that can decompile Java class files, identify queries in the bytecode, and rewrite the code to use SQL instead. The rewritten bytecode can then be run using any standard Java VM. Since queries use standard Java set manipulation syntax, Java programmers do not need to learn any new syntax. Our system is able to handle complex queries that make use of all the basic relational operations and exhibits performance comparable to that of hand-written SQL
    • …
    corecore