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Abstract. When interfacing Java with other systems such as databases,
programmers must often program in special interface languages like SQL.
Code written in these languages often needs to be embedded in strings
where they cannot be error-checked at compile-time, or the Java compiler
needs to be altered to directly recognize code written in these languages.
We have taken a different approach to adding database query facilities to
Java. Bytecode rewriting allows us to add query facilities to Java whose
correctness can be checked at compile-time but which don’t require any
changes to the Java language, Java compilers, Java VMs, or IDEs. Like
traditional object-relational mapping tools, we provide Java libraries for
accessing individual database entries as objects and navigating among
them. To express a query though, a programmer simply writes code
that takes a Collection representing the entire contents of a database,
iterates over each entry like they would with a normal Collection, and
choose the entries of interest. The query is fully valid Java code that,
if executed, will read through an entire database and copy entries into
Java objects where they will be inspected. Executing queries in this way
is obviously inefficient, but we have a special bytecode rewriting tool
that can decompile Java class files, identify queries in the bytecode, and
rewrite the code to use SQL instead. The rewritten bytecode can then
be run using any standard Java VM. Since queries use standard Java set
manipulation syntax, Java programmers do not need to learn any new
syntax. Our system is able to handle complex queries that make use of
all the basic relational operations and exhibits performance comparable
to that of hand-written SQL.

1 Introduction

Queryll is a middleware system that uses bytecode rewriting to allow program-
mers to interface Java with other systems without needing to use an intermediary
language. Currently, Queryll is focused on interfacing Java with SQL databases
by providing database query facilities to Java. With Queryll, programmers can
encode database queries using standard Java syntax for working with collections.
No special compiler or IDE is needed. The queries are also semantically correct
in that if they are executed as written, they will connect to a database, iter-
ate through all the entries in the database, and find the desired entries (though
executing queries in this way is obviously inefficient). When the compiled Java
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bytecode is fed into the Queryll bytecode rewriter, the queries in the bytecode
stream are identified, and they are replaced with code that executes equivalent
SQL queries instead. The bytecode rewriting acts, in fact, like a type of code
optimization in which whole algorithms are replaced with more efficient substi-
tutes.

Unlike Queryll, other middleware systems use special programming languages
to interface Java to other systems. Databases, graphics cards, and symbolic com-
putation engines all require the use custom languages to access their features.
This approach can be very cumbersome. Not only does the Java programmer
need to learn another programming language, but mismatches between the un-
derlying models of these other languages and Java mean that programmers often
have to write extra code for translating concepts between the two models. Since
the Java compiler does not recognize the syntax of any of these other languages,
their code has to be embedded in strings where they cannot be statically error-
checked. Often parameters must be marshaled into special data structures before
they can be passed to and from these other systems. Ultimately, these annoy-
ances distract programmers from larger algorithmic and architectural issues.

One solution to these problems is to create hybrid programming languages
that mix other languages with Java. For example, SQLJ [1] is a hybrid of Java
and SQL. In SQLJ code, SQL queries can be intermixed with Java, and the
queries can make reference to Java variables. Although hybrid languages do
allow for static error-checking and do eliminate the need for data marshaling,
they require special compilers and IDE changes. The approach also falls apart
when multiple interface languages are merged with Java, resulting in a hybrid
language with a complex tangle of additional language constructs.

Ideally, it should be possible to interact with databases and other systems
using regular Java code. That way, programmers would not need to learn a new
language but only a few new API calls to interface with a system. Program-
mers would not need special compilers, nor would they have to deal with issues
such as data marshaling or embedding code inside strings. Unfortunately, it is
impractical to use Java in this way. The primary language construct that these
other interface languages have but Java lacks is a facility for inspecting and
modifying one’s own code. Queries written in a query language need to be un-
derstood and manipulated by a query optimizer to be executed on a database.
A fragment shader program needs to be compiled into instructions that can be
run on a graphics card. Java does support reflection, but it does not have APIs
for understanding and manipulating code.

Unlike other database middleware layers for Java, Queryll provides a pure
Java interface to databases that allows programmers to describe complex queries
without resorting to another programming language. As such, programmers do
not need to learn a new language, and the standard Java compiler can catch
many potential errors at compile-time. There is also no unnatural split in the
middleware API where a simplified API is available for performing basic queries
and a more extensive API is needed for more complex queries. Queryll is able
to achieve this behaviour because it is designed as a bytecode rewriting tool.



As such, it does not make any changes to the Java language, meaning that a
standard Java compiler and IDE can be used by programmers. The rewritten
bytecode can also be run on a standard Java VM. Using bytecode rewriting for
extending Java does not force programmers to change any of their existing tools,
and it can be used to interface Java with multiple systems without adding new
complexity to the Java language.

2 Related Work

There are many middleware languages and tools for interfacing Java with var-
ious databases. These different tools provide differing levels of abstraction and
differing levels of integration with Java.

2.1 JDBC and SQLJ

The standard database middleware layer for Java is JDBC [2]. With JDBC,
queries are described using SQL and are stored in strings. Programmers then
pass these strings to the JDBC API, which executes the queries on a database.
Although JDBC provides some helper methods to help with data marshaling,
programmers must still manually pack parameters into queries and then manu-
ally read out and interpret individual fields from the query results.

As described earlier, SQLJ is a language that combines SQL with Java. Be-
cause of this integration, both the SQL and Java code can be checked for errors
at compile time, programmers can reference Java variables from within SQL,
and programmers can reference SQL results from within Java. Typically, a pre-
compiler is used to compile SQLJ into Java code that uses JDBC.

2.2 ORM Tools

Both JDBC and SQLJ are tightly bound to the SQL table-oriented view of data,
which is inconsistent with Java’s object-oriented model. Object-Relational Map-
ping (ORM) tools such as Hibernate [3] or EJB [4] allow programmers to specify
a mapping from SQL tables to an object representation. The ORM tool then
generates code that allows programmers to manipulate these objects in Java and
have these changes be persisted automatically to the corresponding SQL tables.
Although these objects do hide data marshaling issues and allow programmers
to execute simple queries with just a simple method call, they cannot be used for
more complex queries. For complex queries, ORM tools typically supply a special
object query language such as HQL or EJBQL (Fig. 1). Like JDBC, queries in
these languages are encoded in strings, and programmers must manually encode
parameters into their queries.

2.3 LINQ

In C# 3.0, Microsoft has added a feature called Language Integrated Query
(LINQ) [5]. This feature allows programmers to inline queries with their C#



List l = em.createQuery("SELECT c FROM Customer c WHERE c.id = :id")

.setParameter(":id", 2500)

.getResultList();

Fig. 1. A sample EJBQL query

code. Unlike the approach used by Queryll, extensive changes to the C# com-
piler and language were made in order to support LINQ. Notably, C# now sup-
ports lambda expressions, and C# compiles lambda expressions into two forms:
executable code and a data structure representation that can be inspected at
runtime. The new language constructs in C# only provide support for queries.
They cannot be used to interface C# with systems such as graphics cards, for
example.

2.4 Bytecode Rewriting and Decompiling

All Java compilers compile Java programs into a machine independent interme-
diate representation known as bytecode. This bytecode is stored in files called
classfiles. Java programs are distributed as classfiles which can be executed us-
ing a Java VM. Bytecode rewriting is a well-known Java technique for modifying
the behaviour of compiled Java code. A typical example would be J-Orchestra
[6] which can alter Java objects so that they can be invoked remotely without
requiring changes to the original code. Many aspect-oriented programming tools
also make use of bytecode rewriting to support dynamic aspect weaving [7]. And
some ORM tools already make use of bytecode rewriting to transparently add
persistence code to ordinary Java objects to enable those objects to be stored
in databases. These uses of bytecode rewriting are limited to only modifying
surface features of code such as intercepting method calls; however, some tools
such as the automatic parallelization program javab [8] perform more detailed
code analysis. One can consider classfile decompilation [9], where bytecode is
converted to Java source files, to be an extreme form of bytecode rewriting.
There are several Java decompilation tools, and Queryll borrows some of their
techniques for its work.

3 Queries with Queryll

As mentioned earlier, Queryll is able to take database queries written in regular
Java and rewrite the queries to use SQL. Clearly though, the Queryll bytecode
rewriter is not able to convert arbitrary Java to SQL.

Queryll’s query syntax is designed to conform with standard Java patterns
for working with collections, resulting in a syntax that feels “natural” and con-
sistent with existing Java code. It is also designed to have the properties of being
executable and semantically correct. This means that if the query is compiled
with a standard Java compiler and run on a standard Java VM, the code will



not only execute but will return the correct query result as well. Although the
Queryll bytecode rewriter detects query code and rewrites them to use SQL,
even if no rewriting occurs, the query code is perfectly functional. Admittedly,
without rewriting, the query will be horribly inefficient since it will download
the entire database and iterate through each row; nonetheless, the code will be-
have correctly. By forcing query code to be executable and semantically correct,
we ensure that queries are expressed in sufficient detail that the standard Java
compiler can verify much of the correctness of the query using its existing sta-
tic type checking. These properties also preclude a syntax that introduces new
domain-specific constructs to the Java language.

Queryll uses an object-relational mapping to allow database entities to be
represented and manipulated as objects within Java. Queryll queries are ex-
pressed using iterations over collections of these objects. The current Queryll
query syntax supports selection, projection, and join operations, thereby mak-
ing Queryll functionally equivalent to basic relational algebra. Unfortunately,
Queryll does not yet support aggregation operations or nested queries, meaning
that it is not currently able to handle the extended query operations needed to
express arbitrary SQL queries. Queryll does have support for SQL ordering and
limit operations though.

3.1 Queryll ORM

Because SQL tables are a foreign concept to the object-oriented model of Java,
they need to be translated into some sort of representation that can be ma-
nipulated by Java code. Queryll uses a custom light-weight ORM tool to map
tables to classes. Like with other ORM tools, programmers must describe how
table rows should map to objects, how table fields should be mapped into object
fields, and the various relationships between tables. They are essentially defining
an object representation of a database and defining how to convert between the
SQL representation and the object representation.

So, consider a simple database describing bank clients, each of whom may
have multiple bank accounts. This database might be composed of two tables
(Fig. 2): Client and Account. Using the Queryll ORM tool, this database can be
mapped to the class diagram in Fig. 3.

Client

ClientID
Name
Address
Country
PostalCode

Account

AccountID
ClientID
Balance
MinBalance

Fig. 2. A simple database



Client

*ClientID
Name
Address
Country
PostalCode

Account

*AccountID
Balance
MinBalance

1 0..*

accounts holder

Fig. 3. Class diagram of database entities (* denotes primary keys)

From the mapping, Queryll generates the classes for each entity with acces-
sor methods for fields and special methods for traversing relationships between
objects (for example, retrieving a Collection of accounts belonging to a client).
These objects act as a cache of database data and are all lazily instantiated.
Queryll also creates a special class named EntityManager that is responsible for
ensuring that the database data and their in-memory object representations re-
main consistent. Figure 4 shows how the generated classes may be used. Queryll’s
approach to object-relational mapping is fairly standard among existing ORM
tools.

EntityManager em = db.beginTransaction();

Client c = em.findClient(1000);

System.out.println("Client 1000 lives at " + c.getAddress());

System.out.println("Client 1000 has " + c.getAccounts().size()

+ " accounts");

db.endTransaction(em, true);

// Note: the findClient() method is used here for illustrative

// purposes. In actuality, no such method exists because Queryll

// supports using full queries instead.

Fig. 4. ORM tools can generate classes that allow programmers to access database
data as objects instead of having to deal with SQL tables

3.2 Simple Queries and Selection

Since the main Java construct for working with large amounts of data is the for-
each loop for iterating over arrays and Collections, we built our syntax around
that construct. The for-each loop restricts our queries to using Collections to
represent database contents. As such, we created a special type of Java Collec-
tion called a QuerySet. A QuerySet is a lazily initialized container of database
entities. It holds a SQL query, and when any attempt is made to access any of
the elements of a QuerySet, the QuerySet will execute the query on a database,



and fill itself with the results of the query, and from then on behave like a normal
Java Collection.

To write a simple Queryll query then, a programmer takes an existing Query-
Set, iterates over each element of the QuerySet to find the elements that she is
interested in, and adds these elements to a new QuerySet. All the elements of
the original QuerySet must be iterated over (no premature loops exits), and the
loop code can have no side-effects beyond adding elements to the new QuerySet.
The query syntax is purposely based on adding elements to a new QuerySet
as opposed to modifying an existing QuerySet. The elements added to the new
QuerySet may be of a different type than the elements in the QuerySet being
iterated over, so two different QuerySets are needed for everything to type-check
correctly.

Finally, the programmer must also label the methods containing Queryll
queries with the @Query annotation. Since bytecode rewriting is an expensive
operation, the Queryll bytecode rewriter will only look at the bytecode of @Query
methods when converting queries to their SQL equivalents.

Figure 5 shows a simple Queryll query that finds bank clients who come
from Canada. Notice that the EntityManager object em has methods for return-
ing a QuerySet of all the Client entities in the database. Since all queries must
start with an existing QuerySet, the EntityManager provides the initial Query-
Set objects on which queries can be constructed. As mentioned previously, the
standard Java type rules impose a certain amount of correctness on the query.
The string “country” acts as a parameter in the query, and the Java compiler
ensures that this parameter is of the correct type. The Java compiler also ensures
that the entity fields being examined during the query actually exist (otherwise
the accessor methods would not exist) and that the result of the query is of the
expected type.

QuerySet<String> canadian = new QuerySet<String>();

String country = "Canada";

for (Client c: em.allClient())

if (c.getCountry().equals(country))

canadian.add(c.getName());

Fig. 5. A simple query for finding all clients from Canada

The Queryll query syntax is flexible enough to allow programmers to express
a wide variety of query operations in a natural way. For example, by simply
changing the conditions in which an element is added to a new QuerySet, a
programmer is writing a selection operation.

3.3 Projection

To support projection operations, Queryll supplies a Pair object that can hold
two arbitrary values. Similar to a LISP list which also holds only two values (car



and cdr), the Pair object can be used to construct simple data structures during
a query, which can then be added to a new QuerySet. This ability to create
new data structures is equivalent to using projection operations to create new
columns for database relations or to remove columns from database relations.
Projection operations themselves are not directly expressible in Queryll, as doing
so would mean that Queryll would have to support the creation of new classes
at runtime. The Java syntax for the creation of new classes is quite verbose and
cumbersome, and working with a large number of these classes creates headaches
for programmers because they would not work well with Java’s type system. In
fact, to support projection in LINQ, Microsoft had to create a new C# syntax for
creating new classes at runtime and change the C# type system. Queryll’s use of
Pair objects to provide power equivalent to projection is much more consistent
with existing Java syntax. Figure 6 shows how a programmer might use Pair
objects to hold data about the penalty that should be applied to bank accounts
that are below their minimum balance and hence overdrawn.

QuerySet<Pair<Account, Double>> overdrawn

= new QuerySet<Pair<Account, Double>>();

for (Account a: em.allAccount()) {

if (a.getBalance() < a.getMinBalance()) {

double penalty = (a.getMinBalance() - a.getBalance()) * 0.001;

overdrawn.add(new Pair<Account, Double>(a, penalty);

}

}

Fig. 6. Queryll provides Pair objects, which can be used to create data structures for
holding calculated values, thus providing power equivalent to projection

3.4 Join

Expressing join operations is quite easy in Queryll. Since the relationship be-
tween entities is described during the ORM phase, Queryll generates methods
for navigating among objects, and these methods can be used during queries.
Some types of joins, such as those where a single table row is joined with multiple
rows from another table, are potentially difficult to express in Java, so Queryll
provides a few utility methods for handling these cases. Figure 7 shows two dif-
ferent ways that joins can be used to find all the bank accounts belonging to
clients in Switzerland.

3.5 Ordering and Limit

Currently, Queryll only has preliminary support for the SQL ordering and limit
operations. The syntax for ordering is not yet finalized, but the current syntax



QuerySet<Pair<Client, Account>>

swiss1 = new QuerySet<Pair<Client, Account>>(),

swiss2 = new QuerySet<Pair<Client, Account>>();

for (Account a: em.allAccount())

if (a.getHolder().getCountry().equals("Switzerland"))

swiss1.add(new Pair<Client, Account>(a.getHolder(), a));

for (Client c: em.allClient())

if (c.getCountry().equals("Switzerland"))

swiss2.addAll(Pair.PairCollection(c, c.getAccounts());

Fig. 7. Two different join queries that give the same results

requires programmers to create a sorter class that describes which fields of the
elements should be used for sorting. This is similar to the existing use of the
Comparator object in Java for sorting. Figure 8 shows an example of ordering
in Queryll.

QuerySet<Account> top10Accounts = em.allAccount();

top10Accounts = top10Accounts.sortedByDoubleDescending(

new DoubleSorter<Account>() {

public double value(Account val) {

return val.getBalance();

}

});

top10Accounts = top10Accounts.firstN(10);

Fig. 8. Queryll supports ordering and limit operations as well

4 Implementation

The Queryll system (Fig. 9) is composed of two programs: an ORM tool and a
bytecode rewriter. The bytecode rewriter is by far the more complicated of the
two.

Suppose the query defined in Fig. 10 is given to the Queryll bytecode rewriter.
As mentioned earlier, all methods containing queries should be labelled with a
@Query annotation to help Queryll focus its optimizations on the right pieces of
code. Queryll finds all such methods and feeds the bytecode of these methods into
Sable’s Soot [10] framework for conversion into Jimple code, a representation that
is easier to analyze. Jimple is a three-address code for Java where all variables
are typed (Java objects on the execution stack are usually typeless). Three-
address code is useful because it eliminates Java’s execution stack, resulting in
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one less structure that the bytecode rewriter needs to analyze and making it
easier to rearrange code without having to worry about whether the state of
the stack remains consistent. Queryll does not actually make use of the typing
feature of Jimple, meaning that a simpler three-address code framework than
Soot could be used if one becomes available. Figure 11 shows the Jimplified
version of the compiled bytecode of the previous query. Being a three-address
code, most instructions consist of an operation on two variables, the result of
which is then assigned into third variable.

for (Office of: em.allOffice()) {

if (of.getName().equals("Seattle"))

westcoast.add(of);

else if (of.getName().equals("LA"))

westcoast.add(of);

}

Fig. 10. A simple query that can be analyzed by the Queryll bytecode rewriter

1: $r12 = r1.<EntityManager: Set allOffice()>();

2: r6 = $r12.<Set: Iterator iterator()>();

3: goto label3;

label1: 4: $r13 = r6.<Iterator: Object next()>();

5: r14 = (Office) $r13;

6: $r15 = r14.<Office: String getName()>();

7: $z3 = $r15.<String: boolean equals(Object)>("Seattle");

8: if $z3 == 0 goto label2;

9: r11.<Set: boolean add(Object)>(r14);

10: goto label3;

label2: 11: $r16 = r14.<Office: String getName()>();

12: $z5 = $r16.<String: boolean equals(Object)>("LA");

13: if $z5 == 0 goto label3;

14: r11.<Set: boolean add(Object)>(r14);

label3: 15: $z7 = r6.<Iterator: boolean hasNext()>();

16: if $z7 != 0 goto label1;

Fig. 11. When a query is rewritten to be in a Jimple representation, it is easier to
analyze and manipulate



The next stage of the analysis then involves identifying loops within the code.
Although loops are easy to identify in Java source code, compiled Java code uses
only GOTO statements to describe its control flow. There are generally two ap-
proaches for extracting loops from program code that uses GOTOs for control
flow. One approach is called GOTO-elimination [11] where code transformations
are applied to individual GOTO statements to convert them into looping struc-
tures. Instead, Queryll uses the alternate approach where the control flow graph
is analyzed as a whole and restructured to make use of loops [12]. This latter
approach is used because it provides a deeper understanding of the loop struc-
ture than the former approach. Loops are defined as being strongly connected
components in the control flow graph that have a single entry point. Queryll
further restricts its definition of loops to require that all exits from the strongly
connected component exit to the same instruction. Standard graph algorithms
can be used to find pieces of code that satisfy these requirements and label that
code as being a loop.

Since Queryll queries are all composed of a for-each loop over a QuerySet, the
Queryll bytecode rewriter must be able to determine whether a loop is a for-each
loop or not. A for-each loop that iterates over a Java Collection compiles down
to code that creates an Iterator object from the Collection, and then continually
advances the iterator until there are no more objects left to iterate over (see
instructions 2, 4, 15, and 16 in Fig. 11). Queryll tries to identify this pattern
in loops by looking for iterators being incremented within loops. Queryll also
checks other properties of the loop such as whether each loop instruction has
no side effects except for adding elements to a Collection or incrementing the
iterator. If that is the case, the loop is labelled as a candidate for being a query,
the Collection being iterated over is labelled as the source collection, and the
Collection to which elements are added is labelled as the destination collection.

It then becomes necessary to interpret what sort of query is being performed
by the loop. Since the loop might contain many variables and branching instruc-
tions, it can be difficult to understand what is going on. On the other hand,
analyzing straight-line code is much easier because it is easy to calculate both
the values of variables at any point in the code and dependencies between any
instructions. To take advantage of that fact, Queryll breaks loops down into
straight paths to do its analysis. It does this by examining every control flow
path through a loop that results in a new element being added to the destination
collection. The instructions that form a path are then treated as a straight-line
piece of code. Table 1 shows the two paths that Queryll finds when examining
the code in Fig. 11.

For each path, Queryll determines what the values of local variables need to
be for the path to be followed. So, essentially, for each branch instruction in the
path, Queryll will make a note of what values a variable must take for the branch
to be taken or not. These restrictions on the variables will be ANDed together
to form an expression describing the conditions that need to hold for the path to
be followed. These variables are likely only local variables holding intermediate
calculations that do not directly refer to any concrete object fields though. To



Table 1. There are two paths through the loop that lead to new elements being added
to the destination collection

Path 1 Path 2

15: $z7 = r6.hasNext() 15: $z7 = r6.hasNext()
16: if $z7 != 0 goto label1 16: if $z7 != 0 goto label1
4: $r13 = r6.next() 4: $r13 = r6.next()
5: r14 = (Office) $r13 5: r14 = (Office) $r13
6: $r15 = r14.getName() 6: $r15 = r14.getName()
7: $z3 = $r15.equals(”Seattle”) 7: $z3 = $r15.equals(”Seattle”)
8: if $z3 == 0 goto label2 8: if $z3 == 0 goto label2

(branch not taken) (branch taken)
9: r11.add(r14) 11: $r16 = r14.getName()

12: $z5 = $r16.equals(”LA”)
13: if $z5 == 0 goto label3

(branch not taken)
14: r11.add(r14)

map these variables onto database entries, the bytecode rewriter starts at the
last instruction in the path and goes over each instruction in the path backward.
Since Jimple is a type of three-value code, most instructions are of the form
where a binary operation on two variables is assigned to another variable. If
the variable being assigned to is part of the expression representing the path,
the right-hand side of the instruction (made up of the binary operation on two
variables) is substituted for the left-hand variable in the path expression. When
the first instruction of the path is reached, the resulting expression should be
made up of operations acting on constants, outside variables, or entries from the
source collection. For example, if Queryll was trying to construct an expression
to describe the second path of Table 1, it would go through the steps shown in
Table 2. Because Java bytecode instructions for conditional GOTOs can only
work with conditions involving integers, when the above procedure is used on
code that works with non-integers, the resulting expression contains redundant
comparisons. So in Table 2, the expression for the path compares Office.Name
with “Seattle”, resulting in an integer, and then compares this integer with 0.
These extra comparisons can confuse some SQL implementations, so Queryll
always performs a simplification step on the final expression to remove them.

Each path found by Queryll represents a different way in which a new entry
can be added to the destination collection. So to construct a description of which
elements of the source collection should appear in the destination collection,
Queryll takes the expressions representing each path and ORs them together
(Fig. 12). This giant expression can then be put into the WHERE clause of a
SELECT..FROM..WHERE statement to create a SQL query. Similar techniques
are used to create SQL queries that calculate new columns or which join together
multiple tables.



Table 2. For a given path, Queryll can construct an expression that describes when
the path is executed

Instruction Expression

Initial $z3 = 0 AND $z5 != 0
14: r11.add(r14)
13: if $z5 == 0 goto label3
12: $z5 = $r16.equals(”LA”) $z3 = 0 AND ($r16 = ”LA”) != 0
11: $r16 = r14.getName() $z3 = 0 AND (r14.Name = ”LA”) != 0
8: if $z3 == 0 goto label2
7: $z3 = $r15.equals(”Seattle”) ($r15 = ”Seattle”) = 0

AND (r14.Name = ”LA”) != 0
6: $r15 = r14.getName() (r14.Name = ”Seattle”) = 0

AND (r14.Name = ”LA”) != 0
5: r14 = (Office) $r13 (((Office)$r14).Name = ”Seattle”) = 0

AND (((Office)$r13).Name = ”LA”) != 0
4: $r13 = r6.next() (((Office)entry).Name = ”Seattle”) = 0

AND (((Office)entry).Name = ”LA”) != 0
16: if $z7 != 0 goto label1
15: $z7 = r6.hasNext()
Simplification (((Office)entry).Name != ”Seattle”)

AND (((Office)entry).Name = ”LA”)

SELECT ...

FROM Office AS A

WHERE (((A).Name != "Seattle") AND ((A).Name = "LA"))

OR ((A).Name = "Seattle")

Fig. 12. Queryll ORs together the expressions for each path through the for-each loop
to construct the WHERE clause of a SQL query



5 Benchmarks

The SQL query code generated by Queryll tends to be a little more verbose
than hand-written SQL. Queryll also imposes some additional overhead at run-
time because it uses various abstractions to allow it to construct SQL queries
programmatically. These factors do negatively affect the performance of Queryll
queries. Adopters of middleware must always deal with the trade-off between
increased programmer productivity versus system performance, but ideally the
overhead of Queryll should be tolerably low if not negligible.

We have built a microbenchmark based on TPC-W [13]. TPC-W is a bench-
mark suite that models the behaviour of database-driven websites. We have
taken the Rice University implementation of TPC-W [14], which uses JDBC
SQL queries, as a benchmark base. The full TPC-W benchmark makes use of
application servers and web clients browsing through the website. Instead, we
have taken a select number of queries from the benchmark and evaluated the
throughput of these queries using JDBC and Queryll.

Of the queries in the Rice TPC-W implementation, all the queries involving
updates were removed. Queryll uses an approach to persistence that is standard
among other ORM tools whereby programmers load table rows into objects,
programmers manipulate the fields of the objects, and the ORM tool will write
the objects’ data back to individual table rows before a transaction completes.
Since this technique is already quite pervasive, evaluating update performance
does not provide any new insight into the behaviour of Queryll. Queries making
use of temporary tables, GROUP BY, aggregation functions, and LIKE were
also removed as Queryll does not support these features yet. Of the remaining
queries, many were similar (e.g. reading individual fields from a row in a table),
so we have taken a representative sample of these for the microbenchmark. Table
3 lists the queries included in the microbenchmark. Each query is given a name,
each query is described briefly, and the hand-written SQL used in the Rice TPC-
W implementation of each query is shown.

We created a 600 MB database in PostgreSQL 8.1.3 [15] by populating the
database using these parameters: the number of items was set to 10000 and the
number of EBs was set to 100. During a run of the benchmark, each query was
run 100 times using random valid parameters to warm the database cache, and
then a measurement was taken of the time needed to execute the query 2000
times using random valid parameters. Each configuration was benchmarked at
least 30 times, with only the last 20 runs included in the final measurement
averages. This was needed to remove the effect of Java dynamic compilation
from the measurements and to further warm the database cache. The database
and the query code were both run on the same machine, a 2.5 GHz Pentium IV
Celeron Windows machine, with 1 GB of RAM (though the benchmark harness
was run using Java’s default maximum heap size of 64 MB).

The results of the benchmark are shown in Table 4. Hand-written SQL queries
are generally faster than the queries generated by Queryll except in the doSub-
jectSearch query. Most of the time differences can be explained by miscellaneous
overhead in the generated Java query code or small differences in query execu-



Table 3. Queries used in the benchmark

getName
Find a specific row in a table using its primary key
SELECT c fname, c lname

FROM customer
WHERE c id = ?

getCustomer
Find a specific row in a table and then join it to two other tables
SELECT ...

FROM customer, address, country
WHERE customer.c addr id = address.addr id AND address.addr co id = coun-

try.co id AND customer.c uname = ?

doSubjectSearch
Find all entries in a table with a field set to a certain value, join these entries to
another table, sort them, and take the first 50
SELECT i.i id, i.i title, a.a fname, a.a lname

FROM item i, author a
WHERE i.i subject = ? AND i.i a id = a.a id ORDER BY i.i title (LIMIT 0,50)

getRelated
Find an entry in a table using its primary key, then follow its five references to other
entries in the same table
SELECT J.i id,J.i thumbnail

FROM item I, item J
WHERE (I.i related1 = J.i id or I.i related2 = J.i id or I.i related3 = J.i id or

I.i related4 = J.i id or I.i related5 = J.i id) and I.i id = ?



tion at the database. For example, the generated code for the getName query
(Table 5) is essentially the same as the hand-written code, but the generated
code sends a commit command to the database separately from its query, reads
columns out from ResultSets by referring to columns by name instead of by
index number, stores results in intermediate data structures, and has other ad-
ditional overhead. When the hand-written JDBC code was modified to include
some of the same inefficiencies, its running time shot up dramatically to almost
match the time taken by the Queryll queries. This behaviour suggests that even
though the time difference between hand-written queries and Queryll queries are
large in percentage terms, in absolute terms the difference is quite small. Given
sloppily hand-written JDBC code or highly optimized generated Queryll code,
the time differences could be easily reversed.

Table 4. Benchmark results

Queryll Hand-Written SQL
Query Time (ms) Std Dev Time (ms) Std Dev Difference (ms)

getName 3360 12.3 2053 19.3 1307
with extra processing 3030 18.9 330

getCustomer 7716 141.2 5163 69.1 2552
doSubjectSearch 21450 329.5 22384 25.3 -934

with modified query 20378 18.1 1072
doGetRelated 8124 16.8 3262 10.1 4862

In fact, the generated code for the doSubjectSearch query was consistently
faster than the hand-written code for the query despite the extra overhead in the
generated code. This fact suggests something unusual with the SQL queries, but
the generated SQL query was essentially the same as the hand-written query,
except that the ordering of the columns was different and each column was given
a column alias. When we changed the hand-written query to match the generated
one, its running time became better than that of the generated queries. We can
only assume that the ordering of the columns somehow caused the database to
execute the automatically generated queries in a slightly more optimal way than
the hand-generated one.

The doGetRelated query is the only query that is significantly slower when
using generated queries instead of hand-written ones. This likely results from the
fact that the generated query is quite different from the original query. While
the original query joins the Item table to itself once, the generated query joins
the Item table to itself five times—one for each reference to another Item row.
This happens because Queryll does not currently support arbitrary cross joins
between tables. Instead, the Queryll query is written exactly as it is described
in Table 3. When Queryll analyzes the query, it sees one Item entity with five
separate fields referring to five other Item entities, and it rewrites each reference
to be a separate join operation.



Table 5. SQL queries generated by Queryll

getName
SELECT (A.C FNAME) AS COL0, (A.C LNAME) AS COL1

FROM Customer AS A
WHERE ( ( ((A.C ID) = ?) ) )

getCustomer
SELECT ...

FROM Customer AS A, Address AS B, Country AS C
WHERE ( ( ((A.C UNAME) = ?) ) ) AND A.C ADDR ID = B.ADDR ID AND

B.ADDR CO ID = C.CO ID

doSubjectSearch
SELECT (A.I TITLE) AS COL1, (B.A FNAME) AS COL2, (B.A LNAME) AS

COL3, (A.I ID) AS COL0
FROM Item AS A, Author AS B

WHERE ( ( ((A.I SUBJECT) = ?) ) ) AND A.I A ID = B.A ID ORDER BY
(A.I TITLE)

doGetRelated
SELECT ...

FROM Item AS A, Item AS B, Item AS C, Item AS D, Item AS E, Item AS F
WHERE ( ( ((A.I ID) = ?) ) ) AND A.I RELATED1 = B.I ID AND

A.I RELATED2 = C.I ID AND A.I RELATED3 = D.I ID AND
A.I RELATED4 = E.I ID AND A.I RELATED5 = F.I ID



Overall, the results show that in most cases, using generated queries instead
of hand-written queries should not cause major performance problems. The use
of generated queries does impose some overhead on the application (as opposed
to the database) because it creates more intermediate data structures and uses
more abstractions. Of course, even hand-written JDBC calls can suffer from
similar overhead if programmers aren’t careful. And much of this overhead can
be reduced by improving the automatic code generation of Queryll.

6 Conclusion

Queryll is a middleware layer that allows Java programmers to access databases
without having to resort to a separate interface language. The query syntax is
consistent with existing Java syntax for searching Java collections. Unlike other
database middleware, the Queryll API can handle both simple and complex
queries. And database queries written using Queryll generally have comparable
performance to hand-written queries even though Queryll provides a much higher
level of abstraction.

7 Future Work

Although Queryll currently supports basic relational algebra, it would be useful
to add aggregation and nested query support to Queryll to allow it to handle the
extended algebra behind SQL. The existing code could also be made more robust
through the addition of more error-checking. Additionally, it would be useful to
formalize Queryll’s query syntax and to rigorously define how it is converted to
SQL. One difficult aspect of this is that since Queryll operates on Java bytecode,
the query syntax needs to be defined in terms of bytecode. But this query syntax
must then be backward translated to the regular Java that programmers would
write.

Overall our success in using bytecode rewriting to add query support to Java
makes us hopeful that the approach will also work well for integrating other
interface facilities into Java. We would like to expand Queryll into a general
bytecode rewriting framework that would allow programmers to plug-in various
behaviours appropriate for different interfacing middleware.
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