566 research outputs found

    Requirement for a standard language for test and ground operations

    Get PDF
    The basic requirements for a standard test and checkout language applicable to all phases of the space shuttle test and ground operations are determined. The general characteristics outlined here represent the integration of selected ideas and concepts from operational elements within Kennedy Space Center (KSC) that represent diverse disciplines associated with space vehicle testing and launching operations. Special reference is made to two studies conducted in this area for KSC as authorized by the Advanced Development Element of the Office of Manned Space Flight (MSF). Information contained in reports from these studies have contributed significantly to the final selection of language features depicted in this technical report

    Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    Get PDF
    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws

    Exploring the use of three level guides in elementary and middle school classrooms

    Get PDF
    Collaborative classroom research among a group of elementary and middle school teachers provides insight into the effective use of the Three Level Guide. Building lessons around content area materials, teachers employed the Three Level Guide regularly, coming together to share successes and frustrations and to offer suggestions. Their reflective analyses of the use of the Three Level Guide offer insight into its impact on teacher effectiveness as well as its impact on students\u27 academic achievement, critical thinking ability, and academic esteem

    Prediction of Mortality in Very Premature Infants: A Systematic Review of Prediction Models

    Get PDF
    CONTEXT Being born very preterm is associated with elevated risk for neonatal mortality. The aim of this review is to give an overview of prediction models for mortality in very premature infants, assess their quality, identify important predictor variables, and provide recommendations for development of future models. METHODS Studies were included which reported the predictive performance of a model for mortality in a very preterm or very low birth weight population, and classified as development, validation, or impact studies. For each development study, we recorded the population, variables, aim, predictive performance of the model, and the number of times each model had been validated. Reporting quality criteria and minimum methodological criteria were established and assessed for development studies. RESULTS We identified 41 development studies and 18 validation studies. In addition to gestational age and birth weight, eight variables frequently predicted survival: being of average size for gestational age, female gender, non-white ethnicity, absence of serious congenital malformations, use of antenatal steroids, higher 5-minute Apgar score, normal temperature on admission, and better respiratory status. Twelve studies met our methodological criteria, three of which have been externally validated. Low reporting scores were seen in reporting of performance measures, internal and external validation, and handling of missing data. CONCLUSIONS Multivariate models can predict mortality better than birth weight or gestational age alone in very preterm infants. There are validated prediction models for classification and case-mix adjustment. Additional research is needed in validation and impact studies of existing models, and in prediction of mortality in the clinically important subgroup of infants where age and weight alone give only an equivocal prognosis.Stephanie Medlock, Anita C. J. Ravelli, Pieter Tamminga, Ben W. M. Mol, Ameen Abu-Hann

    Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment

    Get PDF
    Cancer incidence and mortality have both increased in the last decade and are predicted to continue to rise. Diagnosis and treatment of cancers are often hampered by the inability to specifically target neoplastic cells. Bioimprinting is a promising new approach to overcome shortfalls in cancer targeting. Highly specific recognition cavities can be made into polymer matrices to mimic lock-and-key actions seen in in vivo biological systems. Early studies concentrated on molecules and were inhibited by template size complexity. Surface imprinting allows the capture of increasingly complex motifs from polypeptides to single cell organisms and mammalian cells. Highly specific cell shape recognition can also be achieved by cell interaction with imprints that can be made into polymer matrices to mimic biological systems at a molecular level. Bioimprinting has also been used to achieve nanometre scale resolution imaging of cancer cells. Studies of bioimprint-based drug delivery on cancer cells have been recently trialled in vitro and show that this approach can potentially improve existing chemotherapeutic approaches. This review focuses on the possible applications of bioimprinting with particular regards to cancer understanding, diagnosis and therapy. Cell imprints, incorporated into biosensors can allow the limits of detection to be improved or negate the need for extensive patient sample processing. Similar cell imprinting platforms can be used for nanoscale imaging of cancer morphology, as well as to investigate topographical signalling of cancer cells in vitro. Lastly, bioimprints also have applications as selective drug delivery vehicles to tumours with the potential to decrease chemotherapy-related side effects

    Inferring metabolic mechanisms of interaction within a defined gut microbiota

    Get PDF
    The diversity and number of species present within microbial communities create the potential for a multitude of interspecies metabolic interactions. Here, we develop, apply, and experimentally test a framework for inferring metabolic mechanisms associated with interspecies interactions. We perform pairwise growth and metabolome profiling of co-cultures of strains from a model mouse microbiota. We then apply our framework to dissect emergent metabolic behaviors that occur in co-culture. Based on one of the inferences from this framework, we identify and interrogate an amino acid cross-feeding interaction and validate that the proposed interaction leads to a growth benefit in vitro. Our results reveal the type and extent of emergent metabolic behavior in microbial communities composed of gut microbes. We focus on growth-modulating interactions, but the framework can be applied to interspecies interactions that modulate any phenotype of interest within microbial communities

    Finite to infinite steady state solutions, bifurcations of an integro-differential equation

    Get PDF
    We consider a bistable integral equation which governs the stationary solutions of a convolution model of solid--solid phase transitions on a circle. We study the bifurcations of the set of the stationary solutions as the diffusion coefficient is varied to examine the transition from an infinite number of steady states to three for the continuum limit of the semi--discretised system. We show how the symmetry of the problem is responsible for the generation and stabilisation of equilibria and comment on the puzzling connection between continuity and stability that exists in this problem
    corecore