311 research outputs found

    Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an extremely challenging disease with a high mortality rate and a short overall survival time. The poor prognosis can be explained by aggressive tumor growth, late diagnosis, and therapy resistance. Consistent efforts have been made focusing on early tumor detection and novel drug development. Various strategies aim at increasing target specificity or local enrichment of chemotherapeutics as well as imaging agents in tumor tissue. Aptamers have the potential to provide early detection and permit anti-cancer therapy with significantly reduced side effects. These molecules are in-vitro selected single-stranded oligonucleotides that form stable three-dimensional structures. They are capable of binding to a variety of molecular targets with high affinity and specificity. Several properties such as high binding affinity, the in vitro chemical process of selection, a variety of chemical modifications of molecular platforms for diverse function, non-immunoreactivity, modification of bioavailability, and manipulation of pharmacokinetics make aptamers attractive targets compared to conventional cell-specific ligands. To explore the potential of aptamers for early diagnosis and targeted therapy of PDAC - as single agents and in combination with radiotherapy - we summarize the generation process of aptamers and their application as biosensors, biomarker detection tools, targeted imaging tracers, and drug-delivery carriers. We are furthermore discussing the current implementation aptamers in clinical trials, their limitations and possible future utilization

    Structural and Biophysical Insights into SPINK1 Bound to Human Cationic Trypsin

    Get PDF
    (1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1–TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor

    MR-guided adaptive stereotactic body radiotherapy (SBRT) of primary tumor for pain control in metastatic pancreatic ductal adenocarcinoma (mPDAC): an open randomized, multicentric, parallel group clinical trial (MASPAC)

    Full text link
    BACKGROUND Pain symptoms in the upper abdomen and back are prevalent in 80% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC), where the current standard treatment is a systemic therapy consisting of at least doublet-chemotherapy for fit patients. Palliative low-dose radiotherapy is a well-established local treatment option but there is some evidence for a better and longer pain response after a dose-intensified radiotherapy of the primary pancreatic cancer (pPCa). Stereotactic body radiation therapy (SBRT) can deliver high radiation doses in few fractions, therefore reducing chemotherapy-free intervals. However, prospective data on pain control after SBRT of pPCa is very limited. Therefore, we aim to investigate the impact of SBRT on pain control in patients with mPDAC in a prospective trial. METHODS This is a prospective, double-arm, randomized controlled, international multicenter study testing the added benefit of MR-guided adaptive SBRT of the pPca embedded between standard of care-chemotherapy (SoC-CT) cycles for pain control and prevention of pain in patients with mPDAC. 92 patients with histologically proven mPDAC and at least stable disease after initial 8 weeks of SoC-CT will be eligible for the trial and 1:1 randomized in 3 centers in Germany and Switzerland to either experimental arm A, receiving MR-guided SBRT of the pPCa with 5 × 6.6 Gy at 80% isodose with continuation of SoC-CT thereafter, or control arm B, continuing SoC-CT without SBRT. Daily MR-guided plan adaptation intents to achieve good target coverage, while simultaneously minimizing dose to organs at risk. Patients will be followed up for minimum 6 and maximum of 18 months. The primary endpoint of the study is the "mean cumulative pain index" rated every 4 weeks until death or end of study using numeric rating scale. DISCUSSION An adequate long-term control of pain symptoms in patients with mPDAC is an unmet clinical need. Despite improvements in systemic treatment, local complications due to pPCa remain a clinical challenge. We hypothesize that patients with mPDAC will benefit from a local treatment of the pPCa by MR-guided SBRT in terms of a durable pain control with a simultaneously favorable safe toxicity profile translating into an improvement of quality-of-life. TRIAL REGISTRATION German Registry for Clinical Trials (DRKS): DRKS00025801. Meanwhile the study is also registered at ClinicalTrials.gov with the Identifier: NCT05114213

    MR-guided adaptive stereotactic body radiotherapy (SBRT) of primary tumor for pain control in metastatic pancreatic ductal adenocarcinoma (mPDAC): an open randomized, multicentric, parallel group clinical trial (MASPAC)

    Get PDF
    BACKGROUND: Pain symptoms in the upper abdomen and back are prevalent in 80% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC), where the current standard treatment is a systemic therapy consisting of at least doublet-chemotherapy for fit patients. Palliative low-dose radiotherapy is a well-established local treatment option but there is some evidence for a better and longer pain response after a dose-intensified radiotherapy of the primary pancreatic cancer (pPCa). Stereotactic body radiation therapy (SBRT) can deliver high radiation doses in few fractions, therefore reducing chemotherapy-free intervals. However, prospective data on pain control after SBRT of pPCa is very limited. Therefore, we aim to investigate the impact of SBRT on pain control in patients with mPDAC in a prospective trial. METHODS: This is a prospective, double-arm, randomized controlled, international multicenter study testing the added benefit of MR-guided adaptive SBRT of the pPca embedded between standard of care-chemotherapy (SoC-CT) cycles for pain control and prevention of pain in patients with mPDAC. 92 patients with histologically proven mPDAC and at least stable disease after initial 8 weeks of SoC-CT will be eligible for the trial and 1:1 randomized in 3 centers in Germany and Switzerland to either experimental arm A, receiving MR-guided SBRT of the pPCa with 5 × 6.6 Gy at 80% isodose with continuation of SoC-CT thereafter, or control arm B, continuing SoC-CT without SBRT. Daily MR-guided plan adaptation intents to achieve good target coverage, while simultaneously minimizing dose to organs at risk. Patients will be followed up for minimum 6 and maximum of 18 months. The primary endpoint of the study is the “mean cumulative pain index” rated every 4 weeks until death or end of study using numeric rating scale. DISCUSSION: An adequate long-term control of pain symptoms in patients with mPDAC is an unmet clinical need. Despite improvements in systemic treatment, local complications due to pPCa remain a clinical challenge. We hypothesize that patients with mPDAC will benefit from a local treatment of the pPCa by MR-guided SBRT in terms of a durable pain control with a simultaneously favorable safe toxicity profile translating into an improvement of quality-of-life. TRIAL REGISTRATION: German Registry for Clinical Trials (DRKS): DRKS00025801. Meanwhile the study is also registered at ClinicalTrials.gov with the Identifier: NCT05114213

    Prophylactic Glycine Administration Attenuates Pancreatic Damage and Inflammation in Experimental Acute Pancreatitis

    Get PDF
    Background/Aims: Acute pancreatitis (AP) is characterized by premature zymogen activation, systemic inflammatory response resulting in inflammatory infiltrates, sustained intracellular calcium, neurogenic inflammation and pain. The inhibitory neurotransmitter and cytoprotective amino acid glycine exerts a direct inhibitory effect on inflammatory cells, inhibits calcium influx and neuronal activation and therefore represents a putative therapeutic agent in AP. Methods: To explore the impact of glycine, mild AP was induced in rats by supramaximal cerulein stimulation (10 µg/kg BW/h) and severe AP by retrograde injection of sodium taurocholate solution (3%) into the common biliopancreatic duct. 100/300 mmol glycine was administered intravenously before induction of AP. To elucidate the effect of glycine on AP, we determined pathomorphology, pancreatic cytokines as well as proteases, serum lipase and amylase, pancreatic and lung MPO activity and pain sensation. Results: Glycine administration resulted in a noticeable improvement of pathomorphological alterations in AP, such as a reduction of necrosis, inflammatory infiltrates and cytoplasmic vacuoles in cerulein pancreatitis. In taurocholate pancreatitis, glycine additionally diminished pancreatic cytokines and MPO activity, as well as serum lipase and amylase levels. Conclusions: Glycine reduced the severity of mild and much more of severe AP by attenuating the intrapancreatic and systemic inflammatory response. Therefore, glycine seems to be a promising tool for prophylactic treatment of AP

    A Syngeneic Orthotopic Murine Model of Pancreatic Adenocarcinoma in the C57/BL6 Mouse Using the Panc02 and 6606PDA Cell Lines

    Get PDF
    Background/Aims: To develop a clinically relevant immunocompetent murine model to study pancreatic cancer using two different syngeneic pancreatic cancer cell lines and to assess MRI for its applicability in this model. Methods: Two cell lines, 6606PDA and Panc02, were employed for the experiments. Cell proliferation and migration were monitored in vitro. Matrigel™ was tested for its role in tumor induction. Tumor cell growth was assessed after orthotopic injection of tumor cells into the pancreatic head of C57/BL6 mice by MRI and histology. Results: Proliferation and migration of Panc02 were significantly faster than those of 6606PDA. Matrigel did not affect tumor growth/migration but prevented tumor cell spread after injection thus avoiding undesired peritoneal tumor growth. MRI could reliably monitor longitudinal tumor growth in both cell lines: Panc02 had a more irregular finger-like growth, and 6606PDA grew more spherically. Both tumors showed local invasiveness. Histologically, Panc02 showed a sarcoma-like undifferentiated growth pattern, whereas 6606PDA displayed a moderately differentiated glandular tumor growth. Panc02 mice had a significantly shorter (28 days) survival than 6606PDA mice (50 days). Conclusion: This model closely mimics human pancreatic cancer. MRI was invaluable for longitudinal monitoring of tumor growth thus reducing the number of mice required. Employing two different cell lines, this model can be used for various treatment and imaging studies

    Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis: Summary of the Working Group on Drug Development and Trials in Chronic Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop

    Get PDF
    The lack of effective therapeutic agents specifically tailored for chronic pancreatitis (CP) has hampered clinical care and negatively impacted patients' lives. New mechanistic insights now point to novel therapies, which involve both recently developed and/or repurposed agents. This working group focused on 2 main outcomes for CP: pain and progression of disease. The goal is to frame the essential aspects of trial design including patient-centered outcomes, proposed methods to measure the outcomes of pain and progression, and study design considerations for future trials to facilitate rapid drug development for patients with CP
    • …
    corecore